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Резюме
В работе представлены результаты сравнительного исследования методов кластерного анализа данных оптической интраопераци‑
онной спектроскопии при проведении операций по удалению глиальных опухолей различной степени злокачественности. Анализ 
проведен как для отдельных пациентов, так и для всей совокупности данных. Данные были получены методом комбинированной 
оптической спектроскопии, регистрирующим спектр диффузного отражения широкополосного излучения в диапазоне спектра 
500–600 нм (с целью анализа кровенаполненности тканей и степени оксигенации гемоглобина), спектр флуоресценции индуциро‑
ванного 5‑аминолевулиновой кислотой протопорфирина IX (с целью анализа степени изменения тканей) и сигнал диффузно отрал‑
женного лазерного излучения, использовавшегося для возбуждения флуоресценции (с целью учета рассеивающих свойств тканей). 

Abstract
The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery 
of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The 
data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diffuse reflectance spectra 
of broadband radiation in the 500–600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), 
fluorescence spectra of 5‑ALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reflected laser 
light used to excite Pp IX fluorescence (to take into account the scattering properties of tissues). To determine the threshold values of these 
parameters for the tumor, the infiltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative 
optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering 
methods, EM‑algorithm and k‑means methods are optimal for the considered data set and can be used to build a decision support system (DSS) 
for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to the pathological studies were also obtained using 
the methods of spectral and agglomerative clustering. These methods can be used to post‑process combined spectroscopy data.
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Introduction
The incidence of cancer of the сentral nervous system 

is currently increasing steadily [1]. One of the main meth‑
ods of their treatment is surgical removal of malignant 
tumors. However, the determination of the boundaries 
of glial tumors is a nontrivial task due to the peculiarities 
of their growth along the myelinated nerve fibers and 
vessels deep into the healthy white matter of the brain 
[2, 3], which leads to incomplete removal of the tumor 
and a high frequency of postoperative recurrences.

It is the infiltrating nature of the growth of glial tu‑
mors that necessitates the use of additional methods 
of their demarcation during surgery. At the same time, 
optical methods for determining the type and condi‑
tion of biological tissues have a number of significant 
advantages: high speed, accuracy, non‑invasive nature, 
a compact size of the working part of the tool. The most 
popular among optical methods is the registration of 
fluorescence markers of tumor changes of both endog‑
enous and exogenous nature. 

At the moment, the working tool based on the 
principle of optical detection of fluorescence used in 
neurosurgery is the Opmi Pentero microscope with 
Blue400 mode, which allows to observe the level of 
fluorescence (excited in the purple range of the spec‑
trum) accumulation of protoporphyrin IX (PPIX) in‑
duced by 5‑aminolevulinic acid (5‑ALA) in tumor cells. 
The main disadvantage of this method is the subjec‑
tivity of the evaluation of the recorded signal by a 
neurosurgeon. It is the doctor who, largely at his/her 
own discretion, determines which brightness of fluo‑
rescence shall be considered to be a subthreshold lev‑
el where tumor destruction must be stopped. And the 
tactics of surgeons in this regard may differ. Therefore, 
it is essential to use a quantitative approach to intra‑
operative analysis of the type of fabric which is sup‑
ported by optical spectrum analysis. Moreover, in the 
case of a sufficiently large sample of morphologically 
verified conclusions, it is preferable to use not only 
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numerical values but also the preliminary conclusions 
about the type of tissues.

In the case of one parameter characterizing the de‑
gree of tissue malignancy (fluorescence PPIX), determin‑
ing the type of tissue only by the value of the parameter 
is a fairly trivial task. However, as the number of param‑
eters increases, the task becomes more complex and the 
use of statistical methods of data analysis for a prelimi‑
nary conclusion is required. Machine learning methods 
are ideally suited for solving this problem.

This work is devoted to the preliminary cluster analy‑
sis of spectroscopic data for individual patients, as well 
as for the entire data set, with the use of the built‑in li‑
braries in Python language. It describes an optical spec‑
troscopy method that uses the analysis of fluorescence 
spectra of 5‑ALA‑induced PPIX and diffuse reflection 
spectra of tissues, with subsequent extraction of infor‑
mation from them on the absorbers in tissues and their 
light scattering properties. To determine the threshold 
values for the tumor, the infiltration zone and the normal 
level, it is necessary to search for natural clusters in the 
available intraoperative optical spectroscopy data and 
compare them with the results of pathomorphological 
examination.

Materials and methods
Intraoperative optical spectroscopy method
A device was developed for simultaneous reg‑

istration of diffuse reflection spectra and laser‑in‑
duced fluorescence, consisting of a spectroanalyzer 
(LASA‑01‑BIOSPEC), two radiation sources (helium‑
neon laser λ=632.8 nm and a halogen lamp), fiber‑
optic transfer system for the delivery of radiation to 
and from the tissue, as well as a personal computer 
with special software for registration and analysis of 
spectra in real time. The device uses a cross‑filter sys‑
tem that allows the separation of the visible range 
of the spectrum into two areas: the registration of 

Для определения пороговых значений указанных параметров для опухоли, зоны инфильтрации и нормального белого вещества был 
проведен поиск естественных кластеров в имеющихся интраоперационных данных оптической спектроскопии и их сопоставление 
с результатами патоморфологической экспертизы. Было показано, что среди рассмотренных методов кластеризации ЕМ‑алгоритм и 
метод k‑средних оптимальны для рассмотренного набора данных и могут быть использованы для построения системы поддержки 
принятия решений при спектроскопической интраоперационной навигации в нейрохирургии. Релевантные результатам патомор‑
фологических исследований модели были также получены с помощью методов спектральной и агломеративной кластеризации. Эти 
методы могут быть использованы для постобработки данных комбинированной спектроскопии. 
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the diffuse reflection spectrum and the fluorescence 
spectrum of PPIX. 

During the measurements, the distal end of the 
fiber optic probe was brought closer to the tissue to 
the degree of contact without pressure. As a result 
of the measurement, the input of the spectrometer 
receives fluorescent, as well as broadband and laser 
radiation which is diffusely reflected by the tissue. 
The recorded spectral dependences are subjected to 
mathematical processing in accordance with the al‑
gorithms described in [4], in a real‑time mode.

The scattering properties of the tissues were es‑
timated by the intensity of the backward scattered 
laser radiation and are given in comparison with the 
doubled value of the unchanged cortex (since, ac‑
cording to the literature, the diffuse reflection signal 
from white matter in the visible range of the spec‑
trum is on average twice higher than from gray mat‑
ter). The fluorescence intensity was calculated as the 
ratio of PPIX fluorescence intensity in the range of 
690–730 nm to the intensity of the backward scat‑
tered laser radiation. Fluorescent contrast was de‑
termined as the ratio of the fluorescence intensity of 
the tissue studied to the fluorescence intensity of the 
normal cortex. The examples of recorded spectra are 
shown in Fig. 1.

The calculation of the parameters for the analysis was 
made according to the following formulas:
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where S is the area under the graph in the range indicated 
in the lower index;  i is the fluorescence intensity calcu‑
lated from the current spectrum; norm is the fluorescence 
intensity calculated on the basis of the normal tissue 
spectrum (usually from the cortex at some distance from 
the tumor projection);  FI is the fluorescence intensity;  FC 
is the contrast of the tissue under study compared with 
the normal fluorescence intensity;  ScC is the contrast of 
the tissue under study compared to the tissue which has 
normal light scattering level;  k  is the coefficient of the 
fluorescence intensity with due account for the differ‑
ences in light scattering for white and gray matter (k=2 
when used as the norm of gray matter, k=1 when used as 
the norm of white matter);  [Hb]  is the concentration of 
reduced hemoglobin;  [HbO2]  is the concentration of oxy‑
genated hemoglobin;  Hbtotal is the total concentration of 
hemoglobin in the tissue (blood filling);  Sat(Hb) is the de‑
gree of hemoglobin oxygenation (oxygen saturation). 
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Рис. 1. Пример спектров различных типов тканей: зеленым цветом обозначена область оценки степени оксигенации, желтым –  
диффузного отражения лазерного излучения, красным – флуоресценции
Fig. 1. Example of spectra characteristic for different types of tissue: green – spectral range used for evaluation of oxygenation level, 
yellow – diffuse reflectance of laser light, red – fluorescence spectrum
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Clinical data
The study retrospectively used the data from 13 pa‑

tients. Three patients diagnosed with glioblastoma/
astrocytoma from the sample underwent separate re‑
search. The training of the clustering algorithm was 
carried out on each patient separately, and then on the 
aggregate of the three, in order to compare the quality 
metrics on the test sample, which included the remain‑
ing patients. Thus, the algorithm was tested on the ob‑
jects not included in the training sample. The patients 
were orally administered a solution of the hydrochloride 
of 5‑aminolevulinic acid (Alasens product, manufacturer: 
FSUE «SRC «NIOPIK», Russia) calculated as 25 mg/kg body 
weight, 2–4 hours before tumor removal. Videofluoros‑
copy intraoperative navigation was performed with the 
use of operating microscope (Opmi Pentero, Carl Zeiss, 
Germany) with fluorescence module simultaneously 
with spectroscopic navigation device LESA‑01‑Biospec 
(OOO «BIOSPEC», Russia). 2 to 11 tissue samples were tak‑
en from each patient for subsequent histological analysis 
and comparison of its results with the data of spectro‑
scopic examination. Each tissue sample corresponded to 
a number of spectra (from 1 to 10). Thus, 77 tissue sam‑
ples and 876 spectra were analyzed, of which 335 were 
verified by histological conclusions. A scatter diagram of 
all verified objects is shown in Fig. 2.

Working with missing data
The specifics of the collected data is that the technical 

methods for simultaneous registration of all the param‑
eters were not used in the early development and use of 
intraoperative optical spectroscopy method. It was only 
possible to measure the following pairs: the total con‑

centration of hemoglobin in the tissues and the degree 
of its oxygenation or fluorescence intensity and the area 
under the peak of the echo signal. Due to this fact, some 
data was missing.

Missing data refers to empty parameter values of 
the objects. Their processing is a separate section of 
statistics and independent research work. In this study, 
the following standard methods of their processing 
were considered: removal, in which the sample was re‑
duced 2 to 2.5 times, which is an impractical method; 
data zeroing led to the appearance of a set of objects 
with different histological labels at point 0;  averaging 
by parameters, in which the algorithms obtained low 
quality metrics. 

These unsatisfactory results led to the creation of a 
multi‑step data processing strategy which included:

1. The division of data into complete and incomplete
2. The division of the complete data into the training 

sample and the test sample
3. The classification of incomplete data by diagnosis
4. The separation of data broken down by diagnoses 

in accordance with the types of tissues
5. Averaging by each type
6. The combination of training data and data aver‑

aged by type.
There were also patients who had only one pair of 

parameters. In such patients, the missing parameters 
were averaged by type with the parameters of all pa‑
tients with the same diagnosis. Thus, the test sample in‑
cluded the objects with true parameters, and the train‑
ing sample was made as large as possible. This strategy, 
in comparison with other methods of missing data pro‑
cessing, proved to have the highest quality metrics, the 

Рис. 2. Точечная диаграмма верифицированных данных, где СВ – серое вещество головного мозга, БВ – белое вещество голов-
ного мозга, ЗИ – зона инфильтрации, ОП – опухоль
Fig. 2. Scatter plot of verified data, where IZ – Infiltration Zone
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largest number of successful algorithms, the preserva‑
tion of most objects and the highest degree of inter‑
pretation.

Cluster analysis
For cluster analysis, the unsupervised learning ap‑

proach was used. In this paper, we have considered the 
following methods of clustering: the k‑means method, 
spectral clustering, expectation‑maximization method 
(EM‑algorithm), agglomerative clustering, and density 
clustering, the iterations of which are described below.

Before cluster analysis, the data underwent prelimi‑
nary standardization, as it is necessary before such pro‑
cessing. This is to ensure that the weights selected in the 
algorithms are not operated with the parameters of dif‑
ferent orders. 

The k-means method. This is one of the most com‑
mon methods used for primary data processing, which 
gained particular popularity after the publication of Mc‑
Queen’s study [5]. It involves choosing n‑random cluster‑
ing centers. Then, each object is compared to each cen‑
ter, and the object is assigned to the cluster to the center 
of which the object is the closest. Finally, the centers are 
calculated.

Spectral clustering method. In this method, simi‑
larity matrices are defined for the objects. Next, the two 
nearest objects are combined according to the similarity 
matrix so that the objects within the cluster are as differ‑
ent as possible from the objects of other clusters [6].

The EM-algorithm. The method is to maximize likeli‑
hood. It is based on the fact that the density of distribu‑
tion probability for the objects in a sample is a weighted 
sum of the densities of probability in each cluster. All 
clusters are selected from a certain family of distribu‑
tions, which are often families of normal distributions [7].

Agglomerative clustering method. In this method, 
pairwise distances between objects are sorted in ascend‑
ing order, and each is assigned to its own cluster. Then 
a pair of the nearest clusters is selected and combined 
into one. (The search for the closest clusters can be per‑
formed with the use of various combination methods). 
After that, the number of centers is calculated.

Density clustering method. In this method, there 
must be a certain number of other points near the object 
within a certain radius; if this condition is not met, the 
object is labeled as noise.

From the specifics of the use of the clustering algo‑
rithms considered, it is possible to conclude that such 
methods as k‑means and EM‑algorithm can produce the 
output model of data clustering which can then be used 
to predict new objects.

The input parameters were chosen in the way that 
healthy objects were separated as much as possible from 
the rest of the sample into a separate cluster, but the 
number of clusters did not exceed 8. This is due to the 

fact that the number of histologically different objects 
may not exceed 8.

Quality metrics
In order to assess the quality of clustering results, 

various quality metrics are used. Such estimates must 
not depend on the label values themselves but only on 
the sample partition as such. In addition, true labels of 
objects are not always known, so it is necessary to have 
estimates that make it possible to evaluate the quality of 
clustering based on only an unlabeled sample.

There are external and internal quality metrics. The 
external metrics use the information about true cluster‑
ing, while internal metrics use no external information 
and evaluate the quality of clustering only on the basis 
of the dataset. The optimal number of clusters is usually 
determined with the use of internal metrics.

Adjusted Rand Index (ARI). It is assumed that the 
true labels of the objects are known. This measure does 
not depend on the label values as such but only on the 
partitioning of the sample into clusters. Let n be the 
number of objects in the sample, then a is the number 
of pairs of objects that have the same labels and are in 
the same cluster, and b is the number of pairs of objects 
that have different labels and are in different clusters. The 
Rand Index then is:

That is, it is the share of objects for which these par‑
titions (initial and resulting from clustering) are «ap‑
proved». Rand Index (RI) expresses the similarity of two 
different clusterings of the same sample. For this index to 
give values close to zero for random clustering with any n 
and any number of clusters, it is necessary to normalize it. 
This is how the Adjusted Rand Index is determined:

This measure is symmetric and does not depend on 
the values of the labels and their swapping. Thus, this in‑
dex is a measure of the distance between various sample 
partitions. ARI takes values in the range [‑1,1]. Negative 
values correspond to «independent» cluster partitions;  
values close to zero correspond to random partitions, 
and positive values indicate that two partitions are simi‑
lar (coincide at ARI = 1).

Adjusted Mutual Information (AMI). This measure 
is very similar to ARI. It is also symmetric and does not 
depend on the values of the labels and their swapping. 
It is determined with the use of the entropy function, 
with the interpretation of sample splits as discrete distri‑
butions (the probability of the assignment to a cluster is 
equal to the share of objects in the cluster). The AMI in‑
dex is defined as the mutual information for two distribu‑
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tions corresponding to the sample‑to‑cluster partitions. 
Intuitively, mutual information measures the proportion 
of information common to both partitions: how much 
the information on one of them reduces the uncertainty 
in respect of the other.

AMI index is determined in the way which is similar to 
the determination of ARI, making it possible to avoid the 
growth of the AMI index with the increase in the number 
of classes. It takes values in the range of [‑1,1]. The values 
close to zero indicate the independence of the partitions, 
and those close to one, their similarity (coincidence at ARI 
= 1).

Homogeneity, completeness, V-measure. For‑
mally, these measures are also defined with the use of 
entropy and conditional entropy functions, with the con‑
sideration of sample partitions as discrete distributions:

here K is the result of clustering, C is the true division 
of the sample into classes. Thus, h measures the degree 
to which each cluster consists of objects of the same 
class, and c measures the degree to which the objects of 
the same class belong to the same cluster. These mea‑
surements are not symmetrical. Both take on values in 
the range of [0,1], and larger values correspond to more 
accurate clustering. These measures are not normalized 
like ARI or AMI and, therefore, they depend on the num‑
ber of clusters. Random clustering will not produce zero 
values in case of a large number of classes and a small 
number of objects. In these cases, it is preferable to use 
ARI. However, if the number of objects is more than 1000 
and the number of clusters is less than 10, this problem is 
not so pronounced and can be ignored.

To account for both values, h and c, a V‑measure is 
also introduced as their harmonic mean:

It is symmetric and shows how much the two cluster‑
ings are similar to each other.

Silhouette. In contrast to the above metrics, this co‑
efficient does not imply the knowledge of the true labels 
of objects and makes it possible to assess the quality of 
clustering with the use of only the (unlabeled) selection 
and the result of clustering. First, the silhouette is defined 
separately for each object. a is the average distance from 
this object to the objects from the same cluster, b is the 
average distance from this object to the objects from 
the nearest cluster (different from the one in which the 

object itself is). Then the silhouette of the object is the 
value:

The silhouette of a selection is the average value of 
the silhouette of the objects in that selection. Thus, a sil‑
houette shows how the average distance to the objects 
of the same cluster differs from the average distance to 
the objects of other clusters. This value is in the range 
of [‑1,1]. Values close to ‑1 correspond to the clustering 
variant with a high spread, values close to zero mean 
that clusters intersect and overlap, and values close to 
1 correspond to «dense» clearly outlined clusters. Thus, 
the larger the silhouette, the more clearly the clusters are 
outlined, and they are compact, tightly grouped clouds 
of points.

With the silhouette, you can select the optimal num‑
ber of clusters k (if it is not known in advance) and se‑
lect the number of clusters that maximize the value of 
the silhouette. Unlike the previous metrics, the silhou‑
ette depends on the shape of the clusters, and reaches 
larger values on the more convex clusters obtained by 
algorithms based on the restoration of the distribution 
density.

To assess the quality of clustering, clusters were man‑
ually merged in such a way that healthy objects were in 
a separate cluster, and all other objects were combined 
into a cluster of pathology (not healthy ones). Thus, the 
obtained metrics will evaluate how well the used meth‑
od distinguishes the healthy objects from the sick ones.

Results and discussion
Results of the analysis of data for individual pa-

tients
Patient G. Diagnosis: diffuse astrocytoma with pro‑

nounced polymorphism. 
Patient G. had a sample of 12 objects. The quality 

metrics are presented in Table 1. The resulting models in 
the visualization can not be correlated with true repre‑
sentations. However, k‑means and agglomerative clus‑
tering methods were able to group healthy tissues into 
a separate cluster, but the very model of data clustering 
turned out to have very broad boundaries, which allow 
fluorescence intensity above 7.5, which is not typical for 
a healthy brain area. Based on the results of the analysis 
of the data of this patient, it is obvious that these meth‑
ods of processing should be used on sufficiently large 
samples.

For patient G., the methods that have the highest 
quality estimates are density clustering, k‑means, and 
agglomerative clustering.

Patient S. Diagnosis: glioblastoma Grade IV.
As can be seen from Table 2, all algorithms except 

the density method showed equally good results in the 
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division of normal and pathologic samples into separate 
clusters. This is due to its features, which result in mark‑
ing some objects as noise, greatly reducing its quality 
metrics. However, this method allocates objects that are 
close in time into separate clusters. This feature can be 
useful further on for the averaging of such objects in or‑
der to prevent them from making large weights in the 
measurements.

Patient S., in comparison with patient G., had a sample 
of 82 objects, that is, it was almost 6 times more numer‑
ous. Healthy tissues were well grouped into a separate 
cluster, as it can be seen by the example of the visual‑
ization of the agglomerative clustering results (Fig. 3a). 
The input parameters of clustering were selected in such 
a way that allows to differentiate healthy tissues from all 
others. 

It is also worth noting that the obtained straight 
boundaries in the k‑means method (Fig. 3b) are not 
relevant to the complex boundary between clusters 
found in the experiment, which is not apparent in the 
EM‑algorithm (Fig. 3c). However, the EM algorithm did 
not have a gradient transition between clusters, which 
would be typical for infiltration zones and for the dif‑
fuse nature of glioblastomas. In addition, it is difficult to 
interpret the resulting model of data division into clus‑
ters, because healthy tissues were included in a large 
cluster with characteristics that differ from those for 
healthy tissues.

Patient B. Diagnosis: Glioblastoma. 
Patient B. had a sample of 59 objects; the quality met‑

rics of the obtained models are shown in Table 3. The best 
methods were EM‑algorithm, spectral clusterization, k‑
means, agglomerative clustering. However, the values of 
these metrics are not high enough to use the resulting 
clustering models due to insufficient sample size.

Results of the analysis of the data set of all pa-
tients

To begin with, an analysis was carried out of the data set 
of those patients who were earlier considered separately.

Patients B. + G. + C.
The results of the processing of the integrated data 

of patients B., G. and S. are shown in Fig. 4 and in table 
4. The high‑quality metrics and the more predictable na‑
ture of the healthy tissue model make it possible to say 
that the increase of the sample has a positive impact on 
the comprehensive assessment of the results. 

The clustering density method obtained an abnor‑
mally large number of clusters, more than 10. A more de‑
tailed study of this phenomenon showed that most clus‑
ters consist of objects which are close‑standing in terms 
of the registration time, that is, very likely, these spectra 
corresponded to the same small area of tissue. 

The quality assessment of B. + G. + C. models in 
other patients 

Since the processing of the total data set of the three 
patients produced potentially plausible models, the data 

Таблица 1
Метрики качества пациента Г. на отложенной выборке 
Table 1
Quality metrics of held-out set for patient G. 

Название
Metric AMI ARI Гомогенность

Homogeneity
Полнота

Completeness
V-мера

V-measure
Силуэт

Silhouette

ЕМ‑алгоритм
EM‑algorithm

0,4666 0,6409 0,5183 0,6468 0,5754 0,2609

СК
SC

0,4666 0,6409 0,5183 0,6468 0,5754 0,3502

ПК
DC

9,8715 0,0000 9,8715 1,0000 1,9743 0,3705

k‑средних
k‑means

1,0000 1,0000 1,0000 1,0000 1,0000 0.4551

АК 
AC

1,0000 1,0000 1,0000 1,0000 1,0000 0,4551

СК – спектральная кластеризация, ПК – плотностная кластеризация, АК – агломеративная кластеризация 
SC – spectral clustering, DC – density‑based clustering, AC – agglomerative clustering
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were then used to evaluate the quality metrics on their 
basis, in respect of the data of patients for whom no clus‑
tering was performed.

Evaluation of the quality of predictions for patient D. 
(127 objects, 41 verified ones), patient L. (30 objects, 23 
verified ones) and the remaining group of 9 patients (422 

objects, 93 verified ones), on models obtained in patients 
B., G., S., is presented in table 5. 

It can be seen from the obtained metrics that in all pa‑
tients the EM‑algorithm coped with the task almost per‑
fectly, given that the test sample included some types 
of tissues that the algorithm had not dealt with before, 

Таблица 3
Метрики качества пациента Б. на отложенной выборке
Table 3
Quality metrics of held-out set for patient B. 

Название
Metric AMI ARI Гомогенность

Homogeneity
Полнота

Completeness
V-мера

V-measure
Силуэт

Silhouette

ЕМ‑алгоритм
EM‑algorithm

0,8133 0,9150 0,8710 0,8174 0,8434 0,4313

СК
SC

0,8133 0,9150 0,8710 0,8174 0,8434 0,4313

ПК
DC

0,3053 0,2838 0,7268 0,3192 0,4436 0,0815

k‑средних
k‑means

0,8133 0,9150 0,8710 0,8174 0,8434 0,4313

АК 
AC

0,8133 0,9150 0,8710 0,8174 0,8434 0,4313

СК – спектральная кластеризация, ПК – плотностная кластеризация, АК – агломеративная кластеризация 
SC – spectral clustering, DC – density‑based clustering, AC – agglomerative clustering

Таблица 2
Метрики качества пациента С. на отложенной выборке
Table 2
Quality metrics of held-out set for patient S. 

Название
Metric AMI ARI Гомогенность

Homogeneity
Полнота

Completeness
V-мера

V-measure
Силуэт

Silhouette

ЕМ‑алгоритм
EM‑algorithm

1,0000 1,0000 1,0000 1,0000 1,0000 0,2446

СК
SC

1,0000 1,0000 1,0000 1,0000 1,0000 0,2446

ПК
DC

0,4464 0,4411 1,0000 0,4548 0,6252 0,1153

k‑средних
k‑means

1,0000 1,0000 1,0000 1,0000 1,0000 0,2446

АК 
AC

1,0000 1,0000 1,0000 1,0000 1,0000 0,2446

СК – спектральная кластеризация, ПК – плотностная кластеризация, АК – агломеративная кластеризация 
SC – spectral clustering, DC – density‑based clustering, AC – agglomerative clustering
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Рис. 3. Визуализация результатов пациента C. с применением различных методов кластеризации, в сравнении с реальным распреде-
лением объектов (справа), где СВ – серое вещество головного мозга, БВ – белое вещество головного мозга, ОП – опухоль, ЗИ – зона 
инфильтрации:

a – агломеративная кластеризация;
b – кластеризация k-средних;
c – кластеризация ЕМ-алгоритмом

Fig. 3. Visualization of clusterization results (left) compared to actual distribution (right) for patient S., where IZ – infiltration zone:
a – aglomerative clusterization;
b – k-means clusterization;
c – EM-algorithm clusterization

a

b

c
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Рис. 4. Визуализация результатов пациентов Б.+Г.+С. с применением различных методов кластеризации, в сравнении с реаль-
ным распределением объектов (справа), где СВ – серое вещество головного мозга, БВ – белое вещество головного мозга, ОП –  
опухоль, ЗИ – зона инфильтрации:

a – плостностная кластеризация;
b – кластеризация k-средних;
c – кластеризация ЕМ-алгоритм

Fig. 4. Visualization of clustering results (left) compared to actual distribution (right) for patients B.+G.+S., where IZ – infiltration zone:
a – density-based clustering;
b – k-means clustering;
c – EM-algorithm clustering

a

b

c
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whereas the k‑means method showed a relatively worse 
result in most cases.

Conclusion
The following most universal models can be dis‑

tinguished from the visualized models and measured 
quality metrics: EM‑algorithm, k‑means method, 
spectral clustering and agglomerative clustering. 
However, the last two methods do not provide ready‑
made models that can evaluate new data, which ex‑
cludes them in the creation of decision‑making assis‑
tance systems, but they are suitable for post‑process‑
ing of the data. 

When the number of obtained clusters is greater than 
the number of the types of labels, it creates practical dif‑
ficulties in iterating and merging clusters for the evalua‑

tion of models. Sensitivity to the sample size can be seen 
in the quality metrics and the nature of the model bound‑
aries in patient C. and the integrated patients B. + G. + C., 
who had 12 objects and 41 objects, respectively. In most 
cases, and with a sufficient sample, almost all algorithms 
perfectly coped with the task in individual patients, and 
the method of density clustering, which obtained, on av‑
erage, poor quality metrics, was found to be special in 
the identification of objects close in time, which can help 
in further research. 

The drawbacks listed, except the lack of operability 
on insufficient samples, can be mitigated with the use 
of other machine learning methods, namely, supervised 
learning, where the model will be trained on specific an‑
swers, which are labels of a class represented by histo‑
logical findings. 

Таблица 5
Метрики качества предсказаний пациентов на полученных на пациентах Б., Г., С. моделях
Table 5
Quality metrics of patient predictions based on models obtained from patients B., G. and S. 

Пациент
Patient

Название
Metric AMI ARI Гомогенность

Homogeneity
Полнота

Completeness
V-мера

V-measure
Силуэт

Silhouette

Д.
D.

EM‑алгоритм
EM‑algorithm

1,0000 1,0000 1,0000 1,0000 1,0000 0,1420

k‑средних
k‑means

0,6860 0,8479 0,8091 0,6976 0,7449 0,1420

Л.
L.

EM‑алгоритм
EM‑algorithm

1,0000 1,0000 1,0000 1,0000 1,0000 0,8165

k‑средних
k‑means

1,0000 1,0000 1,0000 1,0000 1,0000 0,8165

Все
All

EM‑алгоритм
EM‑algorithm

1,0000 1,0000 1,0000 1,0000 1,0000 –0,1452

k‑средних
k‑means

0,5468 0,7529 0,5587 0,7425 0,6376 –0,1452

Таблица 4
Метрики качества пациентов Б.+Г.+С. на отложенной выборке 
Table 4
Quality metrics of held-out set for patients B.+G.+S. 

Название
Metric AMI ARI Гомогенность

Homogeneity
Полнота

Completeness
V-мера

V-measure
Силуэт

Silhouette
ЕМ‑алгоритм
EM‑algorithm

1,0000 1,0000 1,0000 1,0000 1,0000 0,2366

СК
SC

1,0000 1,0000 1,0000 1,0000 1,0000 0,2366

ПК
DC

0,0191 0,1026 0,0452 0,0544 0,0494 0,2397

k‑средних
k‑means

0,6442 0,8291 0,8058 0,6548 0,7225 0,2366

АК 
AC

1,0000 1,0000 1,0000 1,0000 1,0000 0,2397

СК – спектральная кластеризация, ПК – плотностная кластеризация, АК – агломеративная кластеризация 
SC – spectral clustering, DC – density‑based clustering, AC – agglomerative clustering
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The results of the study of spectroscopic data make 
it possible to identify correlations between several pa‑
rameters numerically, with the use of machine learn‑
ing methods, determined by spectra and histological 
conclusions about the presence of tissue malignancy 
signs.

In comparison with the method of statistical data pro‑
cessing presented earlier, the method of intraoperative 
registration of combined spectra described in the article 
[8], the sensitivity increased, on average, from 88% to 
90%, and the specificity from 82% to 91%.

The results presented in the article were obtained 
with the use of research equipment of the Core Facilities 
Center «Technological and Diagnostic Center for the Pro‑
duction, Research and Certification of Micro and Nano‑
structures» of the Federal State Budgetary Institution of 
Science A. M. Prokhorov General Physics Institute of the 
Russian Academy of Sciences.

The study was done with the financial support of the 
Ministry of Education and Science of the Russian Federation 
(agreement RFMEFI60717X0183). 
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