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Abstract

The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery
of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The
data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diffuse reflectance spectra
of broadband radiation in the 500-600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation),
fluorescence spectra of 5-ALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reflected laser
light used to excite Pp IX fluorescence (to take into account the scattering properties of tissues). To determine the threshold values of these
parameters for the tumor, the infiltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative
optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering
methods, EM-algorithm and k-means methods are optimal for the considered data set and can be used to build a decision support system (DSS)
for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to the pathological studies were also obtained using
the methods of spectral and agglomerative clustering. These methods can be used to post-process combined spectroscopy data.

Keywords: optical spectroscopy, fluorescence, diffuse reflectance, 5-ALA, protoporphyrin IX, neurosurgery, gliomas, cluster analysis

For citations: Osmakov I.A., Savelieva T.A., Loschenov V.B., Goryajnov S.A., Potapov A.A. Cluster analysis of the results of intraoperative optical
spectroscopic diagnostics in brain glioma neurosurgery, Biomedical photonics, 2018, vol. 7, no. 4, pp. 23-34. (in Russ.) 10.24931/2413-9432-2018-
7-4-23-34.

Contacts: Osmakov I.A., e-mail: ilya.osmakov@gmail.com

KJTIACTEPHbI AHAJIN3 PE3YJIBTATOB _
UHTPAOINEPALUMOHHOU ONTUHECKOMU
CMNEKTPOCKOIMMNYECKOUN ONATHOCTUKUN
B HEMPOXUPYPTUU TTIMATIbHBIX OIMYXOJIEUN
FOJIOBHOIO MO3rA

MU.A. Ocbmakos', T.A. Casenbesa'?, B.b. Jlowenos'?, C.A. lopsiHos®, A.A. Motanos®
"HaupoHanbHbIi nccnegosatensckmit aaepHbin yiusepcutet «MUDPU», Mockea, Poccus
2UncTutyT obuen dusmkm um. A.M. MNpoxoposa Poccurckoit akanemmn Hayk, Mockea, Poccua
SHauMOHAMBHBIN MEAULMHCKMI MCCIIEN0BATENLCKMM LEHTP HEMPOXMPYPrMM

nmenn akagemuka H. H. bypperko, Mockea, Poccus

Pesome
B pabote npeacTaBneHbl pesynbraTbl CPaBHUTENbHOIO MCCIE[0BaHMSA METOLOB KJIAaCTEPHOrO aHanmn3a JaHHbIX ONTUYECKO MHTpaonepauu-
OHHOW CMEeKTPOCKONUY MPU NPOBEAEHNI OMNepaLii MO YAANeHWIo rraibHbIX OMyXoNel PasfvyHON CTEMNEHN 3/10KauyecTBeHHOCTH. AHanwu3
NpoBefieH KaK AnA OTAENbHbIX NaLMEHTOB, Tak U 1A BCel COBOKYMHOCTM aHHbIX. [JaHHble Gbinv NonyyYeHbl METOAOM KOMOVHVIPOBAaHHOW
ONTUYECKOWN CMEKTPOCKOMNNM, PErNCTPUPYIOLLUM CeKTPp Addy3HOro OTpaXkeHUs LUMPOKOMOJSIOCHOTO W3y4YeHVs B AMana3oHe CrnekTpa
500-600 HM (C Lenblo aHanM3a KPOBEHAMOMHEHHOCTN TKaHe! 1 CTeNeHn OKCUreHaummn reMornobrHa), cnekTp dnyopecueHuun nHayumMpo-
BaHHOIO 5-aMUHONEBYNIMHOBOWN KMcoTol npoTonopdupuHa IX (c Lenbio aHanmsa cTeneHn N3MeHeHNA TKaHel) 1 curHan anddysHo otpas
YKEHHOTO J1a3epHOro U3JlyYeHus, NCNOoJIb30BaBLUErocs Ans Bo30yaeHus dbryopecLeHLmn (C Liesbio yyeTa paccerBaloLwmx CBOMCTB TKaHe).
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[lna onpepeneHris NOPOroBbIX 3HAYEHU YKa3aHHbIX MapamMeTpOB AJis OMNyXOosu, 30HbI MHOUIIBTPALIMM 1 HOPMAJIbHOTO 6eNloro BeLecTBa Gbi
NPOBeAeH MOVCK eCTECTBEHHbIX KIAaCTEPOB B MIMEIOLLMXCA MHTPAONEPaLMOHHbIX AaHHbIX ONTUYECKOW CAEKTPOCKOMMMN 1 UX COMOCTaBeHne
C pe3ynbTaTamMy NaToMOpPPONOrMyeckon sKkcnepTu3bl. bbino NokasaHo, YTo cpeAn PacCMOTPEHHbIX METOAOB KracTepu3auuu EM-anroputm un
meTog k-cpeHvx onTuManbHbl Ans PAaCCMOTPEHHOrO Habopa AaHHbIX U MOTYT ObITb MCMOMb30BaHbI /s MOCTPOEHUA CUCTEMbI NMOALEPKKN
NPUHATUA PELUEHNIN NPU CNEKTPOCKONUYECKON NHTPaonepaLioHHON HaB/Uraummn B HeMpoxupypriuv. PenesaHTHble pesynbTatam naToMop-
donornyeckrx nccnefoBaHnin Mofeny Gbiv TakKe MosyyYeHbl C MOMOLLbIO METOZIOB CMEKTPAbHON 1 arfloMepaTUBHON Knactepr3auuu. 3u
METOZbl MOTYT ObITb MCMOJIb30BaHbI A/ MOCTOOPAOOTKMN JaHHbIX KOMOVHUPOBAHHOW CMEKTPOCKOMMWN.

KnioueBble cnioBa: onTnyeckas cnekTpockonus, pnyopecueHuus, suddysHoe otpaxeHue, 5-AJTK, npotonopdupuiH X, Hepoxmpyprus, rmme
OMblI, KNTaCTePHbIN aHanms.

Ana untnposaHua: Ocbmakos U.A., Casenbesa T.A,, JloweHos B.b., lopanHos C.A,, MNoTtanos A.A. KnacTepHbiln aHann3 pesynbraTtoB MHTPa-
onepaLMoHHOW OMTUYECKOW CNIEKTPOCKOMNYECKON ANAarHOCTUKM B HENPOXMPYPTV MasibHbIX OMyXosiell rofoBHoro mosra // Biomedical
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Introduction

The incidence of cancer of the central nervous system
is currently increasing steadily [1]. One of the main meth-
ods of their treatment is surgical removal of malignant
tumors. However, the determination of the boundaries
of glial tumors is a nontrivial task due to the peculiarities
of their growth along the myelinated nerve fibers and
vessels deep into the healthy white matter of the brain
[2, 3], which leads to incomplete removal of the tumor
and a high frequency of postoperative recurrences.

It is the infiltrating nature of the growth of glial tu-
mors that necessitates the use of additional methods
of their demarcation during surgery. At the same time,
optical methods for determining the type and condi-
tion of biological tissues have a number of significant
advantages: high speed, accuracy, non-invasive nature,
a compact size of the working part of the tool. The most
popular among optical methods is the registration of
fluorescence markers of tumor changes of both endog-
enous and exogenous nature.

At the moment, the working tool based on the
principle of optical detection of fluorescence used in
neurosurgery is the Opmi Pentero microscope with
Blue400 mode, which allows to observe the level of
fluorescence (excited in the purple range of the spec-
trum) accumulation of protoporphyrin IX (PPIX) in-
duced by 5-aminolevulinic acid (5-ALA) in tumor cells.
The main disadvantage of this method is the subjec-
tivity of the evaluation of the recorded signal by a
neurosurgeon. It is the doctor who, largely at his/her
own discretion, determines which brightness of fluo-
rescence shall be considered to be a subthreshold lev-
el where tumor destruction must be stopped. And the
tactics of surgeons in this regard may differ. Therefore,
it is essential to use a quantitative approach to intra-
operative analysis of the type of fabric which is sup-
ported by optical spectrum analysis. Moreover, in the
case of a sufficiently large sample of morphologically
verified conclusions, it is preferable to use not only

numerical values but also the preliminary conclusions
about the type of tissues.

In the case of one parameter characterizing the de-
gree of tissue malignancy (fluorescence PPIX), determin-
ing the type of tissue only by the value of the parameter
is a fairly trivial task. However, as the number of param-
eters increases, the task becomes more complex and the
use of statistical methods of data analysis for a prelimi-
nary conclusion is required. Machine learning methods
are ideally suited for solving this problem.

This work is devoted to the preliminary cluster analy-
sis of spectroscopic data for individual patients, as well
as for the entire data set, with the use of the built-in li-
braries in Python language. It describes an optical spec-
troscopy method that uses the analysis of fluorescence
spectra of 5-ALA-induced PPIX and diffuse reflection
spectra of tissues, with subsequent extraction of infor-
mation from them on the absorbers in tissues and their
light scattering properties. To determine the threshold
values for the tumor, the infiltration zone and the normal
level, it is necessary to search for natural clusters in the
available intraoperative optical spectroscopy data and
compare them with the results of pathomorphological
examination.

Materials and methods

Intraoperative optical spectroscopy method

A device was developed for simultaneous reg-
istration of diffuse reflection spectra and laser-in-
duced fluorescence, consisting of a spectroanalyzer
(LASA-01-BIOSPEC), two radiation sources (helium-
neon laser A=632.8 nm and a halogen lamp), fiber-
optic transfer system for the delivery of radiation to
and from the tissue, as well as a personal computer
with special software for registration and analysis of
spectra in real time. The device uses a cross-filter sys-
tem that allows the separation of the visible range
of the spectrum into two areas: the registration of
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the diffuse reflection spectrum and the fluorescence
spectrum of PPIX.

During the measurements, the distal end of the
fiber optic probe was brought closer to the tissue to
the degree of contact without pressure. As a result
of the measurement, the input of the spectrometer
receives fluorescent, as well as broadband and laser
radiation which is diffusely reflected by the tissue.
The recorded spectral dependences are subjected to
mathematical processing in accordance with the al-
gorithms described in [4], in a real-time mode.

The scattering properties of the tissues were es-
timated by the intensity of the backward scattered
laser radiation and are given in comparison with the
doubled value of the unchanged cortex (since, ac-
cording to the literature, the diffuse reflection signal
from white matter in the visible range of the spec-
trum is on average twice higher than from gray mat-
ter). The fluorescence intensity was calculated as the
ratio of PPIX fluorescence intensity in the range of
690-730 nm to the intensity of the backward scat-
tered laser radiation. Fluorescent contrast was de-
termined as the ratio of the fluorescence intensity of
the tissue studied to the fluorescence intensity of the
normal cortex. The examples of recorded spectra are
shown in Fig. 1.

The calculation of the parameters for the analysis was
made according to the following formulas:

FI;

FI. = S[690.7301,i

FCi =
S[625.6401,i Flnorm
ScCp= L ppy o, = [H]; + [HbO,];

k+*S[625.640],n0rm ’
Hb i
HbCi — total,i

Hbtotal,norm

_ _HbOy; _ _ Sat(Hb);
Sat(Hb)l - Hbtatal,i Sat(Hb)Cl - Sat(Hb)norm

where Sis the area under the graph in the range indicated
in the lower index; iis the fluorescence intensity calcu-
lated from the current spectrum; norm is the fluorescence
intensity calculated on the basis of the normal tissue
spectrum (usually from the cortex at some distance from
the tumor projection); Flis the fluorescence intensity; FC
is the contrast of the tissue under study compared with
the normal fluorescence intensity; ScC is the contrast of
the tissue under study compared to the tissue which has
normal light scattering level; k is the coefficient of the
fluorescence intensity with due account for the differ-
ences in light scattering for white and gray matter (k=2
when used as the norm of gray matter, k=1 when used as
the norm of white matter); [Hb] is the concentration of
reduced hemoglobin; [HbOZ] is the concentration of oxy-
genated hemoglobin; Hb, is the total concentration of
hemoglobin in the tissue (blood filling); Sat(Hb) is the de-
gree of hemoglobin oxygenation (oxygen saturation).

3500

3000

2500

5 2000

1500

1000

JIHTEeHCHBHOCTD, YCII. €1 /
Intencity a. u

500

550 600

Benoe BemecTBO rOJOBHOTO MO3Ta/ Brain

650
Jinuna BonHbL, HM / Wavelength, nm

700 750 800 850

=T nHOGIacTOMa / Glioblastoma

Puc. 1. [Ipymep CNeKTPOB pa3/IMyHbIX TUMOB TKaHEW: 3eJieHbIM LIBETOM 0603Ha4YeHa 06/1acTb OLEHKU CTENEHU OKCUTEHALIUM, KENTbIM —
andody3Horo oTpaxkeHus na3epHoOro U3NyyeHus, KpacHbiM — dbnyopecLeHLun

Fig. 1. Example of spectra characteristic for different types of tissue: green - spectral range used for evaluation of oxygenation level,
yellow — diffuse reflectance of laser light, red — fluorescence spectrum
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Clinical data

The study retrospectively used the data from 13 pa-
tients. Three patients diagnosed with glioblastoma/
astrocytoma from the sample underwent separate re-
search. The training of the clustering algorithm was
carried out on each patient separately, and then on the
aggregate of the three, in order to compare the quality
metrics on the test sample, which included the remain-
ing patients. Thus, the algorithm was tested on the ob-
jects not included in the training sample. The patients
were orally administered a solution of the hydrochloride
of 5-aminolevulinic acid (Alasens product, manufacturer:
FSUE «SRC «NIOPIK», Russia) calculated as 25 mg/kg body
weight, 2-4 hours before tumor removal. Videofluoros-
copy intraoperative navigation was performed with the
use of operating microscope (Opmi Pentero, Carl Zeiss,
Germany) with fluorescence module simultaneously
with spectroscopic navigation device LESA-01-Biospec
(OO0 «BIOSPEC», Russia). 2 to 11 tissue samples were tak-
en from each patient for subsequent histological analysis
and comparison of its results with the data of spectro-
scopic examination. Each tissue sample corresponded to
a number of spectra (from 1 to 10). Thus, 77 tissue sam-
ples and 876 spectra were analyzed, of which 335 were
verified by histological conclusions. A scatter diagram of
all verified objects is shown in Fig. 2.

Working with missing data

The specifics of the collected data is that the technical
methods for simultaneous registration of all the param-
eters were not used in the early development and use of
intraoperative optical spectroscopy method. It was only
possible to measure the following pairs: the total con-

centration of hemoglobin in the tissues and the degree
of its oxygenation or fluorescence intensity and the area
under the peak of the echo signal. Due to this fact, some
data was missing.

Missing data refers to empty parameter values of
the objects. Their processing is a separate section of
statistics and independent research work. In this study,
the following standard methods of their processing
were considered: removal, in which the sample was re-
duced 2 to 2.5 times, which is an impractical method;
data zeroing led to the appearance of a set of objects
with different histological labels at point 0; averaging
by parameters, in which the algorithms obtained low
quality metrics.

These unsatisfactory results led to the creation of a
multi-step data processing strategy which included:

1. The division of data into complete and incomplete

2. The division of the complete data into the training

sample and the test sample

3. The classification of incomplete data by diagnosis

4. The separation of data broken down by diagnoses
in accordance with the types of tissues

5. Averaging by each type

6. The combination of training data and data aver-
aged by type.

There were also patients who had only one pair of
parameters. In such patients, the missing parameters
were averaged by type with the parameters of all pa-
tients with the same diagnosis. Thus, the test sample in-
cluded the objects with true parameters, and the train-
ing sample was made as large as possible. This strategy,
in comparison with other methods of missing data pro-
cessing, proved to have the highest quality metrics, the
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largest number of successful algorithms, the preserva-
tion of most objects and the highest degree of inter-
pretation.

Cluster analysis

For cluster analysis, the unsupervised learning ap-
proach was used. In this paper, we have considered the
following methods of clustering: the k-means method,
spectral clustering, expectation-maximization method
(EM-algorithm), agglomerative clustering, and density
clustering, the iterations of which are described below.

Before cluster analysis, the data underwent prelimi-
nary standardization, as it is necessary before such pro-
cessing. This is to ensure that the weights selected in the
algorithms are not operated with the parameters of dif-
ferent orders.

The k-means method. This is one of the most com-
mon methods used for primary data processing, which
gained particular popularity after the publication of Mc-
Queen'’s study [5]. It involves choosing n-random cluster-
ing centers. Then, each object is compared to each cen-
ter, and the object is assigned to the cluster to the center
of which the object is the closest. Finally, the centers are
calculated.

Spectral clustering method. In this method, simi-
larity matrices are defined for the objects. Next, the two
nearest objects are combined according to the similarity
matrix so that the objects within the cluster are as differ-
ent as possible from the objects of other clusters [6].

The EM-algorithm. The method is to maximize likeli-
hood. It is based on the fact that the density of distribu-
tion probability for the objects in a sample is a weighted
sum of the densities of probability in each cluster. All
clusters are selected from a certain family of distribu-
tions, which are often families of normal distributions [7].

Agglomerative clustering method. In this method,
pairwise distances between objects are sorted in ascend-
ing order, and each is assigned to its own cluster. Then
a pair of the nearest clusters is selected and combined
into one. (The search for the closest clusters can be per-
formed with the use of various combination methods).
After that, the number of centers is calculated.

Density clustering method. In this method, there
must be a certain number of other points near the object
within a certain radius; if this condition is not met, the
object is labeled as noise.

From the specifics of the use of the clustering algo-
rithms considered, it is possible to conclude that such
methods as k-means and EM-algorithm can produce the
output model of data clustering which can then be used
to predict new objects.

The input parameters were chosen in the way that
healthy objects were separated as much as possible from
the rest of the sample into a separate cluster, but the
number of clusters did not exceed 8. This is due to the

fact that the number of histologically different objects
may not exceed 8.

Quality metrics

In order to assess the quality of clustering results,
various quality metrics are used. Such estimates must
not depend on the label values themselves but only on
the sample partition as such. In addition, true labels of
objects are not always known, so it is necessary to have
estimates that make it possible to evaluate the quality of
clustering based on only an unlabeled sample.

There are external and internal quality metrics. The
external metrics use the information about true cluster-
ing, while internal metrics use no external information
and evaluate the quality of clustering only on the basis
of the dataset. The optimal number of clusters is usually
determined with the use of internal metrics.

Adjusted Rand Index (ARI). It is assumed that the
true labels of the objects are known. This measure does
not depend on the label values as such but only on the
partitioning of the sample into clusters. Let n be the
number of objects in the sample, then a is the number
of pairs of objects that have the same labels and are in
the same cluster, and b is the number of pairs of objects
that have different labels and are in different clusters. The
Rand Index then is:

2(a+ D)
T n(n-1)

That is, it is the share of objects for which these par-
titions (initial and resulting from clustering) are «ap-
proved». Rand Index (R/) expresses the similarity of two
different clusterings of the same sample. For this index to
give values close to zero for random clustering with any n
and any number of clusters, it is necessary to normalize it.
This is how the Adjusted Rand Index is determined:

RI — E[RI]
ARl = —————
max(RI) — E[RI]

This measure is symmetric and does not depend on
the values of the labels and their swapping. Thus, this in-
dex is a measure of the distance between various sample
partitions. AR/ takes values in the range [-1,1]. Negative
values correspond to «independent» cluster partitions;
values close to zero correspond to random partitions,
and positive values indicate that two partitions are simi-
lar (coincide at AR/ = 1).

Adjusted Mutual Information (AMI). This measure
is very similar to ARI. It is also symmetric and does not
depend on the values of the labels and their swapping.
It is determined with the use of the entropy function,
with the interpretation of sample splits as discrete distri-
butions (the probability of the assignment to a cluster is
equal to the share of objects in the cluster). The AM/ in-
dex is defined as the mutual information for two distribu-
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tions corresponding to the sample-to-cluster partitions.
Intuitively, mutual information measures the proportion
of information common to both partitions: how much
the information on one of them reduces the uncertainty
in respect of the other.

AMlindex is determined in the way which is similar to
the determination of ARI, making it possible to avoid the
growth of the AMI index with the increase in the number
of classes. It takes values in the range of [-1,1]. The values
close to zero indicate the independence of the partitions,
and those close to one, their similarity (coincidence at AR/
=1).

Homogeneity, completeness, V-measure. For-
mally, these measures are also defined with the use of
entropy and conditional entropy functions, with the con-
sideration of sample partitions as discrete distributions:

H(CIK)
~ HO

H(K|C)
~ H®E)

here K is the result of clustering, C is the true division
of the sample into classes. Thus, h measures the degree
to which each cluster consists of objects of the same
class, and ¢ measures the degree to which the objects of
the same class belong to the same cluster. These mea-
surements are not symmetrical. Both take on values in
the range of [0,1], and larger values correspond to more
accurate clustering. These measures are not normalized
like ARl or AMI and, therefore, they depend on the num-
ber of clusters. Random clustering will not produce zero
values in case of a large number of classes and a small
number of objects. In these cases, it is preferable to use
ARI. However, if the number of objects is more than 1000
and the number of clusters is less than 10, this problem is
not so pronounced and can be ignored.

To account for both values, h and ¢, a V-measure is
also introduced as their harmonic mean:

hc
h+c

v=2

It is symmetric and shows how much the two cluster-
ings are similar to each other.

Silhouette. In contrast to the above metrics, this co-
efficient does not imply the knowledge of the true labels
of objects and makes it possible to assess the quality of
clustering with the use of only the (unlabeled) selection
and the result of clustering. First, the silhouette is defined
separately for each object. a is the average distance from
this object to the objects from the same cluster, b is the
average distance from this object to the objects from
the nearest cluster (different from the one in which the

object itself is). Then the silhouette of the object is the
value:

_ b-a
5= max(a, b)

The silhouette of a selection is the average value of
the silhouette of the objects in that selection. Thus, a sil-
houette shows how the average distance to the objects
of the same cluster differs from the average distance to
the objects of other clusters. This value is in the range
of [-1,1]. Values close to -1 correspond to the clustering
variant with a high spread, values close to zero mean
that clusters intersect and overlap, and values close to
1 correspond to «dense» clearly outlined clusters. Thus,
the larger the silhouette, the more clearly the clusters are
outlined, and they are compact, tightly grouped clouds
of points.

With the silhouette, you can select the optimal num-
ber of clusters k (if it is not known in advance) and se-
lect the number of clusters that maximize the value of
the silhouette. Unlike the previous metrics, the silhou-
ette depends on the shape of the clusters, and reaches
larger values on the more convex clusters obtained by
algorithms based on the restoration of the distribution
density.

To assess the quality of clustering, clusters were man-
ually merged in such a way that healthy objects were in
a separate cluster, and all other objects were combined
into a cluster of pathology (not healthy ones). Thus, the
obtained metrics will evaluate how well the used meth-
od distinguishes the healthy objects from the sick ones.

Results and discussion

Results of the analysis of data for individual pa-
tients

Patient G. Diagnosis: diffuse astrocytoma with pro-
nounced polymorphism.

Patient G. had a sample of 12 objects. The quality
metrics are presented in Table 1. The resulting models in
the visualization can not be correlated with true repre-
sentations. However, k-means and agglomerative clus-
tering methods were able to group healthy tissues into
a separate cluster, but the very model of data clustering
turned out to have very broad boundaries, which allow
fluorescence intensity above 7.5, which is not typical for
a healthy brain area. Based on the results of the analysis
of the data of this patient, it is obvious that these meth-
ods of processing should be used on sufficiently large
samples.

For patient G., the methods that have the highest
quality estimates are density clustering, k-means, and
agglomerative clustering.

Patient S. Diagnosis: glioblastoma Grade IV.

As can be seen from Table 2, all algorithms except
the density method showed equally good results in the
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division of normal and pathologic samples into separate
clusters. This is due to its features, which result in mark-
ing some objects as noise, greatly reducing its quality
metrics. However, this method allocates objects that are
close in time into separate clusters. This feature can be
useful further on for the averaging of such objects in or-
der to prevent them from making large weights in the
measurements.

PatientS., in comparison with patient G., had a sample
of 82 objects, that is, it was almost 6 times more numer-
ous. Healthy tissues were well grouped into a separate
cluster, as it can be seen by the example of the visual-
ization of the agglomerative clustering results (Fig. 3a).
The input parameters of clustering were selected in such
a way that allows to differentiate healthy tissues from all
others.

It is also worth noting that the obtained straight
boundaries in the k-means method (Fig. 3b) are not
relevant to the complex boundary between clusters
found in the experiment, which is not apparent in the
EM-algorithm (Fig. 3¢). However, the EM algorithm did
not have a gradient transition between clusters, which
would be typical for infiltration zones and for the dif-
fuse nature of glioblastomas. In addition, it is difficult to
interpret the resulting model of data division into clus-
ters, because healthy tissues were included in a large
cluster with characteristics that differ from those for
healthy tissues.

Patient B. Diagnosis: Glioblastoma.

Patient B. had a sample of 59 objects; the quality met-
rics of the obtained models are shown in Table 3. The best
methods were EM-algorithm, spectral clusterization, k-
means, agglomerative clustering. However, the values of
these metrics are not high enough to use the resulting
clustering models due to insufficient sample size.

Results of the analysis of the data set of all pa-
tients

To begin with, an analysis was carried out of the data set
of those patients who were earlier considered separately.

Patients B. + G. + C.

The results of the processing of the integrated data
of patients B., G. and S. are shown in Fig. 4 and in table
4. The high-quality metrics and the more predictable na-
ture of the healthy tissue model make it possible to say
that the increase of the sample has a positive impact on
the comprehensive assessment of the results.

The clustering density method obtained an abnor-
mally large number of clusters, more than 10. A more de-
tailed study of this phenomenon showed that most clus-
ters consist of objects which are close-standing in terms
of the registration time, that is, very likely, these spectra
corresponded to the same small area of tissue.

The quality assessment of B. + G. + C. models in
other patients

Since the processing of the total data set of the three
patients produced potentially plausible models, the data

Ta6nuua 1
METpVIKVI KayecTBa nauueHta I. Ha OTAOXKEHHOM Bbl60pKe

Table 1
Quality metrics of held-out set for patient G.

HasBaHune ““ TomoreHHOCTb MonHoTa V-mepa

EM-anroputm

EM-algorithm 0,4666 0,6409
ECK 0,4666 0,6409
BE 9,8715 0,0000
I,::go:f::'x 1,0000 1,0000
22 1,0000 1,0000

0,5183

0,5183

9,8715

1,0000

1,0000

0,6468 0,5754 0,2609
0,6468 0,5754 0,3502
1,0000 1,9743 0,3705
1,0000 1,0000 0.4551
1,0000 1,0000 0,4551

CK - cnekTpanbHana knactepusauus, NK - nnotHocTHas knactepmsauusa, AK — arnomepaTtrBHas Knactepusayma
SC - spectral clustering, DC — density-based clustering, AC — agglomerative clustering
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were then used to evaluate the quality metrics on their
basis, in respect of the data of patients for whom no clus-
tering was performed.

Evaluation of the quality of predictions for patient D.
(127 objects, 41 verified ones), patient L. (30 objects, 23
verified ones) and the remaining group of 9 patients (422

objects, 93 verified ones), on models obtained in patients
B., G., S., is presented in table 5.

It can be seen from the obtained metrics that in all pa-
tients the EM-algorithm coped with the task almost per-
fectly, given that the test sample included some types
of tissues that the algorithm had not dealt with before,

TaGauua 2

MeTpuKK KauecTBa nauueHTa C. Ha OTAOXKEHHOM BblbOpKe
Table 2

Quality metrics of held-out set for patient S.

HasBaHue AMI ARI lTomoreHHOCTb MonHota V-mepa Cunyat
EM-anroputm 1,0000 1,0000 1,0000 1,0000 1,0000 0,2446
EM-algorithm
CK
i 1,0000 1,0000 1,0000 1,0000 1,0000 0,2446
MK
oc 0,4464 04411 1,0000 0,4548 0,6252 01153
SE T 1,0000 1,0000 1,0000 1,0000 1,0000 02446
k-means
AK
" 1,0000 1,0000 1,0000 1,0000 1,0000 0,2446

CK - cnekTpanbHana knactepusauus, MK - nnoTHocTHas knactepusauymsa, AK — arnomepaTtrBHas Knactepusayma
SC - spectral clustering, DC — density-based clustering, AC — agglomerative clustering

Ta6nuupa 3
MeTpuku KauecTBa nauuMeHTa b. Ha 0TAOXKEeHHOW BbI6OpKe

Table 3
Quality metrics of held-out set for patient B.

HasBaHue AMI ARI TomoreHHOCTb MonHota V-mepa Cunyat
EM-anropum 0,8133 0,9150 0,8710 08174 0,8434 04313
EM-algorithm
K
s 0,8133 0,9150 0,8710 0,8174 0,8434 04313
MK
oe 03053 02838 07268 03192 0,4436 0,0815
G PEL 0,8133 0,9150 0,8710 0,8174 0,8434 04313
k-means
AK
C 08133 0,9150 0,8710 0,8174 0,8434 04313

CK - cnekTpanbHana knactepusauus, MK - nnotHocTHas knactepusauymsa, AK — arnomepaTtrBHasA Knactepusayma
SC - spectral clustering, DC — density-based clustering, AC — agglomerative clustering
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Fig. 3. Visualization of clusterization results (left) compared to actual distribution (right) for patient S., where IZ - infiltration zone:
a — aglomerative clusterization;
b - k-means clusterization;
¢ — EM-algorithm clusterization
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Fig. 4. Visualization of clustering results (left) compared to actual distribution (right) for patients B.+G.+S., where IZ - infiltration zone:
a — density-based clustering;
b — k-means clustering;
¢ — EM-algorithm clustering
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Ta6nuua 4

MeTpuku KauectBa naumeHToB b.+T.+C. Ha 0TAOXKEHHOI Bbi6OpKe

Table 4
Quality metrics of held-out set for patients B.+G.+S.

EM-anroputm

. 1,0000 1,0000 1,0000 1,0000 1,0000 0,2366
EM-algorithm

gg 1,0000 1,0000 1,0000 1,0000 1,0000 0,2366
MK

oe 0,0191 0,1026 0,0452 0,0544 0,0494 0,2397
PRI 0,6442 0,8291 0,8058 0,6548 07225 0,2366
k-means

QE 1,0000 1,0000 1,0000 1,0000 1,0000 0,2397

CK - cnekTpanbHas knactepusauyus, MK - nnoTHocTHas Knactepusauma, AK — arnomepaTtrBHasa Knactepmsaumsa
SC - spectral clustering, DC - density-based clustering, AC - agglomerative clustering

Ta6nauua 5

MeTpuku kKauectsa HpeACKa3aHMf"I nauMeHTOB Ha NOAyYeHHbIX Ha nauueHTax b., I, C. moaensix

Table 5

Quality metrics of patient predictions based on models obtained from patients B., G. and S.

EM-anroputm

0.  EMalgorithm 10000 10000 1,0000 1.0000 10000 01420
D. -
k-cpeprmx 06860  0,8479 0,8091 0,6976 0,7449 0,1420
k-means
EM-anropat 4 5500 1,0000 1,0000 1,0000 1,0000 0,8165
7. EM-algorithm
L. :
k-cpeaHux 1,0000 1,0000 1,0000 1,0000 1,0000 0,8165
k-means
EM-anropvlTM 1,0000 1,0000 1,0000 1,0000 1,0000 -0,1452
Bce EM-algorithm
All :
k-cpegHux 05468  0,7529 0,5587 0,7425 0,6376 -0,1452
k-means

whereas the k-means method showed a relatively worse
result in most cases.

Conclusion

The following most universal models can be dis-
tinguished from the visualized models and measured
quality metrics: EM-algorithm, k-means method,
spectral clustering and agglomerative clustering.
However, the last two methods do not provide ready-
made models that can evaluate new data, which ex-
cludes them in the creation of decision-making assis-
tance systems, but they are suitable for post-process-
ing of the data.

When the number of obtained clusters is greater than
the number of the types of labels, it creates practical dif-
ficulties in iterating and merging clusters for the evalua-

tion of models. Sensitivity to the sample size can be seen
in the quality metrics and the nature of the model bound-
aries in patient C. and the integrated patients B. + G. + C,,
who had 12 objects and 41 objects, respectively. In most
cases, and with a sufficient sample, almost all algorithms
perfectly coped with the task in individual patients, and
the method of density clustering, which obtained, on av-
erage, poor quality metrics, was found to be special in
the identification of objects close in time, which can help
in further research.

The drawbacks listed, except the lack of operability
on insufficient samples, can be mitigated with the use
of other machine learning methods, namely, supervised
learning, where the model will be trained on specific an-
swers, which are labels of a class represented by histo-
logical findings.
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The results of the study of spectroscopic data make
it possible to identify correlations between several pa-
rameters numerically, with the use of machine learn-
ing methods, determined by spectra and histological
conclusions about the presence of tissue malignancy
signs.

In comparison with the method of statistical data pro-
cessing presented earlier, the method of intraoperative
registration of combined spectra described in the article
[8], the sensitivity increased, on average, from 88% to
90%, and the specificity from 82% to 91%.
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