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Abstract

The motivation for the present study was the need to develop methods of urgent intraoperative biopsy during surgery for removal of intracranial
tumors. Based on the experience of previous joint work of GPIRAS and N.N. Burdenko National Medical Research Center of Neurosurgery to introduce
fluorescence spectroscopy methods into clinical practice, an approach combining various optical-spectral techniques, such as autofluorescence
spectroscopy, fluorescence of 5-ALA induced protoporphyrin IX, diffuse reflection of broadband light, which can be used to determine hemoglobin
concentration in tissues and their optical density, Raman spectroscopy, which is a spectroscopic method that allows detection of various molecules
in tissues by vibrations of individual characteristic molecular bonds. Such a variety of optical and spectral characteristics makes it difficult for the
surgeon to analyze them directly during surgery, as it is usually realized in the case of fluorescence methods — tumor tissue can be distinguished
from normal with a certain degree of certainty by fluorescence intensity exceeding a threshold value. In case the number of parameters exceeds
a couple of dozens, it is necessary to use machine learning algorithms to build a intraoperative decision support system for the surgeon. This
paper presents research in this direction. Our earlier statistical analysis of the optical-spectral features allowed identifying statistically significant
spectral ranges for analysis of diagnostically important tissue components. Studies of dimensionality reduction techniques of the optical-spectral
feature vector and methods of clustering of the studied samples also allowed us to approach the implementation of the automatic classification
method. Importantly, the classification task can be used in two applications - to differentiate between different tumors and to differentiate
between different parts of the same (center, perifocal zone, normal) tumor. This paper presents the results of our research in the first direction. We
investigated the combination of several methods and showed the possibility of differentiating glial and meningeal tumors based on the proposed
optical-spectral analysis method.
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Peslome
MoTuBaLeii NpoBeeHNA HACTOALLETO NCCe0BaHUA NMOCY»KM1a HEOOXOAVIMOCTb Pa3BUTUA METOAO0B CPOUHON MHTPaonepaLioHHON 6ron-
CUV NMPpU NPOBEAEHUY OMepaLuii Mo NMoBoAY yAasieHVA BHYTPUYepenHbIX ornyxoneil. Ha ocHoBaHMM onbiTa npeablayLueil COBMECTHON paboTbl
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NO® PAH n HMWL| Helpoxupypruv um. H.H. BypaeHKo no BHeAPEHNIO B KIMHNYECKYI0 NMPakTUKY METOA0B $JlyopecLieHTHON CNeKTPOCKoNnumn
6bin pa3paboTaH NOAX0A, KOMOVHMPYIOLLWI Pa3INYHble ONTUKO-CMeKTPasbHble METOAMKM, Takmne Kak CNeKTpOCKoNuaA ayTodgyopecLeHLuy,
dnyopecueHumun 5-AJTK nHpgyumpoBaHHoro npotornopdupuHa IX, anddysHOro oTpakeHUs LNMPOKOMONOCHOTO U3NyYeHUs, MO KOTOPOMY
MOXHO OnpefesNiATb KOHLEHTPaLMIO reMoriobuHa B TKaHAX 1 MX ONTUYECKYIO MIOTHOCTb, CMEKTPOCKOMUA KOMOVHALMOHHOIO pacceaHus,
ABNAIOLAACA METOAOM MOJNEKYNAPHON CNEKTPOCKOMMUY, MO3BONALMM AETEKTMPOBATb Pa3fNyHble MONEKYIIbl B TKAHAX 3a cYeTa KonebaHui
OTAENbHbIX XapakTepPHbIX CBA3ell B MoneKynax. Takoe pasHoobpasue OnTUKO-CNeKTPasbHbIX XapaKTePUCTUK 3aTPYAHAET X HEeMOCPeACTBEH-
HbI aHanM3 XMPYProm BO BPEeMsA onepaLmi, Kak 3To 06bIYHO peannsyeTca B ciyyae $pyiyopecLieHTHbIX METOAOB — MO NMPEBbILIEHNI0 HEKOTO-
pOro nopora HTEHCMBHOCTY GpyopecLieHLMN C ONpeAeneHHO CTEMEeHbIO JOCTOBEPHOCTI MOXHO CYAUTb O TOM, HAXOAUTCA N B 30HE 1ccre-
[OBaHNA HOpMaslbHasA U OnyxoneBas TKaHb. B ciyyae, ecny Uncno napameTpoB NpeBblIAET Napy AeCATKOB, HEOO6XOAUMO UCMONb30BaHNe
aJIrOpPUTMOB MaLLUVMHHOIO 0BOyYeHWA 418 NOCTPOEHNA CUCTEMbI MOAAEPXKKM NMPUHATUA PELLEeHUiA Xpypra Bo Bpemsa onepaumn. HactoAwas
paboTa npeAcTaBAAeT UCCefoBaHNA B 3TOM HanpasieHnu. [poBefjeHHbIi HaMW paHee CTaTUCTUYECKUIA aHaNn3 AaHHbIX OMTUKO-CNeKTpab-
HbIX XapaKTePUCTUK NO3BOJIUN BbIAENNTb CTAaTUCTUYECKM 3HAUMMble CMEKTPasibHbIE JUanasoHbl ANA aHann3a, PenpeseHTUpyoLiMe anarHo-
CTUYECKW BaXkHble KOMMOHEHTbI TKaHel. iccnenoBaHna MeTOf0B MOHMMKEHNA Pa3MePHOCTU BEKTOPa OMTUKO-CNEeKTPasibHbIX MPU3HAKOB 1
MeTOZI0B KnacTepu3aLunm nccieayemMblix 06pasLioB Tak»Ke NO3BONUAN NPUOAN3UTLCA K peann3aLmnmn MeTofja aBTOMaTUYeCKon Knaccudukauum.
BaXHO OTMETUTb, UTO 3afjaya KaccprKaLmm MOXKET ObITb NCMONb30BaHa B ABYX MPUIOXKEHUAX — A1A AnddepeHLaLmmn pasnmyHbIX onyxo-
nen v ans guddepeHumalny pasnmnyHbIX Yactein ogHow (LeHTp, nepudokanbHas 30Ha, HopMa) onyxonu. B HacToswel paboTe NpeacTaBieHbl
pesynbTaThl HALWWX UCCIeA0BaHUIA B NePBOM HanpasneHun. Mbl nccnefoBann coyeTaHne HEeCKONbKMX METOAOB 1 MOKasanu BO3MOXHOCTb
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,qmclxbepeHumaumm rMnanbHbIX N MEHNHIE€aJIbHbIX OI'IyXOHGVI Ha OCHOBaHMN NpeasioXKeHHOro MmeToAa ONnTUKO-CNEKTPaZIbHOIro aHasin3a.
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Introduction

Brain tumors are a group of neoplasms arising from
various cells of the central nervous system (CNS) or
from systemic cancers that have metastasized to the
CNS. Systemic cancers most prone to metastasize to the
CNS include lung cancer, melanoma, and breast cancer.
Primary brain tumors include a number of histologic
types with notably different rates of tumor growth.
Brain tumors can cause symptoms associated with
local invasion of the brain, compression of neighboring
structures, and increased intracranial pressure.

Determination of tumor type is required at all stages
of treatment for treatment planning and prognosis.
One of the most common methods for automating the
diagnosis of intracranial tumors is classification based
on proton magnetic resonance spectroscopy data
[1]. The approach based on MRI image analysis is also
widely used to build automatic classification systems
[2]. However, the capabilities of this method are limited
and there is still a high demand for intraoperative
techniques for rapid determination of tissue type in the
resection area, especially such techniques are relevant
for intraoperative photodynamic therapy, which is
gaining popularity in neurosurgical practice [3, 4l.
Optical spectroscopy methods based on both 5-ALA
induced protoporphyrin IX fluorescence analysis [5-7]
or chlorin-based photosensitizers [8] and molecular
spectroscopy methods [9, 10] offer a wide range of
possibilities in this field. We have previously proposed
a combined approach integrating fluorescence and
diffuse reflectance spectroscopy [11], and have further

developed it by adding analysis of spontaneous Raman
spectra [12, 13].

One of the important advantages of using Raman
spectroscopy is that there is no need to introduce special
markers into the body, since this method is based on
the analysis of changes in the vibrational energy of the
molecules that make up biological tissues. Therefore,
the very molecular composition of the studied sample
serves as a spectral signature, rather than the level
of accumulation of some marker in it. This approach
becomes most diagnostically relevant when performing
tissue spectral analysis of benign tumors, which
accumulate 5-ALA in less than 40% of cases [14], chlorin
e6 in less than half of cases [8]. Thus, proposed approach
can be used in the diagnosis of nonfluorescent gliomas
and other tumors that are difficult to contrast.

Materials and methods

Experimental design

The experimental design is described in detail in one
of our previous papers [13]. Studies were performed
in the Laboratory of Neurosurgical Anatomy and
Preservation of Biological Materials on tumor tissue
samples extracted during neurosurgical operations,
immediately after removal. Samples from 150 patients
with diagnoses of glioblastoma (n = 60), meningioma
(n = 38), astrocytoma (n = 19), oligodendroglioma
(n = 19), and metastases (n = 14) were examined. From
each patient, 1 to 4 biopsy specimens (total 195 tissue
samples) were taken with subsequent verification by
pathomorphologic examination.
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The summarized measurement procedure consisted
of the following steps (Fig. 1):

1. registration of endogenous fluorescence spectra
of the sample with a 405 nm laser excitation by
LESA-01-BIOSPEC spectrometer;

2. registration of spectra of diffuse reflection of white
light from the sample and fluorescence spectra
of 5-ALA induced protoporphyrin IX in a sample
with a 632.8 nm excitation by LESA-01-BIOSPEC
spectrometer;

3. registration of the spontaneous spectra of the
sample at 785 nm laser excitation with a Raman-
HR-TEC-785 spectrometer.

Raman scattering, 5-ALA induced protoporphyrin

IX fluorescence, and diffuse reflectance spectra in the
500-600 nm region were measured for all samples.
Autofluorescence measurements were performed for
163 samples out of 195.

Since our recent studies on cluster analysis of these

data [15] have shown that without partitioning by

Stage 2 /2 3Tan:
Fluorescence / ®riyopecueHuuns

8
8

650 700 750 80(

Wavelength, nm / lnnna BonHbl, HM

&
®
3

520 560

Intensity / MHTEeHCMBHOCTL

3 —

VinTencUBKOCTS, OTH €.

Inlensity, rel.u./

2]
1

Decomposition to Hb,
HbO2, scattering /
I mAHa
cnekpsl Hb, HbO2
cBeTopaccesite.

Wideband diffuse
reflectance /

‘Smoothing, absorbance
spectrum processing /

Gi

T y
AuddysHoe oTpaxeHne CreKTpa MornoLeH1s

405nm laser
backscattering /
[McbdysHoe oTpaxeHite
Dasepa 405 Hu

Smoothing, peak area
calculation/
Cr
632.8 nm laser BbIUMCTIEHNE NMoWaan
backscattering / nvka
[DuchbysHoe oTpaxeHme
Nasepa 632.8 W

Fluorescence from 405

1
1
2
2 1
-2 1
2K I
Z5
c E |
S 1
o8
T < 1
]
=0 1
Q J
O g |
£
o 1
1
I

" .
/\ Tissue sample / w
O6pasel, TKaHK -
e T w w @ W f
Wavelength. nm / [Inusa sont, Hm

nm / ®nyopecuexuns
0T 405 HM

Smoothing, spectrum
decomposition/
Cr

Fluorescence from632.8
nm / ®nyopecueHuus oT
632.8 Hm

/AEKOMMO3NLMA NO
3TaNoHHLIM CreKTpam

Fluorescence index
calculation/
BblumcieHme NHAEKCOB
nyopecueHyun

diagnosis into separate clusters it is possible to separate
tumors of meningeal and glial nature, but not different
gliomas, all glial tumors were combined into one class
in this paper. Fig. 2 shows the scheme of feature vector
formation based on the analysis of diffuse reflectance,
fluorescence and Raman spectra.

Machine learning methods for processing and analyzing
spectral data

Biomedical data often have omissions because some
procedures may not have been performed on individual
patients due to individual differences or chance
circumstances. Other scenarios for the occurrence of
these omissions are also possible. Thus, in our case,
the feature vector was initially generated from Raman
spectroscopy, white light diffuse reflectance and
fluorescence spectroscopy data under excitation at 632.8
nm. However, since in this study we were more interested
in tumors that did not show contrast by accumulation
of 5-ALA induced protoporphyrin IX, since it is these
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tumors that require additional features to differentiate
them from healthy tissues, we included the method of
recording autofluorescence under 405 nm excitation.
Thus, some of the measurements we have do not contain
the full range of features. To ensure that all samples can
be used for classification, in such cases, the missing
features are recovered using information about their
values in those samples that have them.There are several
approaches to data recovery. One type of interpolation
algorithm is univariate interpolation, which interpolates
the values in the i-th feature dimension using only the
non-missing values in that feature dimension. One
of the simplest examples of this approach is filling in
missing values with the sample mean of that attribute.
This approach does not improve for these vectors the
quality of classification on this feature, but does not
degrade it either, while still allowing these samples to
be used in the analysis. In contrast, multivariate missing
data interpolation algorithms use the entire set of
available features to estimate missing values. This is
done by modeling each feature with missing values as
a function of other features and using this estimate for
imputing values. Cluster analysis can also be used to
recover missing data. In the present work, we have used
the k-Nearest Neighbors imputer. Each missing feature
is reconstructed using values from n nearest neighbors
that have a value for that feature. Neighbor feature values
are averaged uniformly or weighted by the distance to
each neighbor. If more than one feature is missing from
a sample, the neighbors for that sample may be different
depending on the specific feature being recovered. If
the number of available neighbors is less than n and the
distances to the training set are not defined, the average
value of the training set for a given feature is used in
the imputation. If there is at least one neighbor with a
certain distance, the weighted or unweighted average of
the remaining neighbors will be used in the calculation.
If a feature is persistently absent from the training, it is
removed during the transformation.

Since we analyze data obtained by different optical-
spectral methods, they require unification and selection
of significant features in the feature vector. To this end,
we performed a two-step dimensionality reduction
procedure [16]. Feature filtering removes features
(wavelengths, wave numbers, peak positions) that may
contain noise or information that lowers the contrast
between the studied groups. This procedure reduces
the dimensionality of the data and focuses on useful
information. The second approach to dimensionality
reduction is to project features onto the new space and
discard less relevant features. We have demonstrated
that a feature pre-filtering step before applying
feature projection techniques for dimensionality
reduction significantly improves classification results.
Dimensionality reduction methods due to feature

projection can be categorized into linear and nonlinear
methods. Linear methods include principal component
analysis (PCA) and linear discriminant analysis (LDA).
Among the nonlinear ones we used in this paper
are: spectral embedding (Laplacian Eigenmaps, SE),
t-distributed stochastic neighbor embedding (t-SNE).

Among the methods used in this paper to classify
the labeled data, support vector machine, logistic
regression and Bayesian approach with the assumption
of independence of features in the vector, referred to as
naive Bayes, were used.

The support vector machine amounts to finding
the hyperplane boundary between classes, that is one
dimension lower than the number of features. In general,
two groups of objects in the plane can be separated
by a straight line. However, if the boundary between
them has a complex shape, we can artificially increase
the dimensionality by introducing an additional axis
obtained as a function of one of the features, and in the
new space find a more appropriate separator between
classes. This feature is called the kernel function and its
choice can significantly change the classification results.
Logistic regression is also based on dividing the data in
the feature space into groups using some threshold. In
linear regression terms, the class of data is the dependent
variable. The probability of falling into each class is
described by a sigmoid function with a threshold for
classification. A naive Bayesian classifier is based on the
application of Bayes’ theorem (which allows us to refine
the conditional probability of an event, e.g., whether
an object belongs to a class based on both a priori
probability and new data) with strict (naive) assumptions
about feature independence.

Results and discussion

Figs. 3, 4 show the variants of defining tumors
by their type — each illustration shows all the results
of different classifiers for one of the dimensionality
reduction methods. A training sample (50% in each
class) was used to train the classifier, and the sensitivity
and specificity of the classifier were evaluated on the
remaining data.

The results show high specificity in detecting
meningiomas (i.e.,, non-meningiomas falling into non-
meningioma classes), but the maximum sensitivity of
their detection does not exceed 50% when combining
linear discriminant analysis as a dimensionality reduction
method and a naive Bayesian classifier.

For distinguishing between normal tissue, tumor
tissue, and necrosis, 50% of the samples in each class
were used as a training set. For glial tumors, the sensitivity
varied between 81% and 94%, with the combination of
linear discriminant analysis as a dimensionality reduction
method and naive Bayesian classifier showing the best
results (Fig. 5, Table 1). Due to low number of samples
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Puc. 3. KnaccudumKaums o6pasLoB nNo guarHo3am (KpacHblii — MEHUHIMOMbI, CUHWUI — ITIMOMbI, 3€/1€HbI — MeTacTa3bl) nocsie NpUuMeHe-
Hus PCA: a — meTo OMOpHbIX BEKTOPOB; b — normctuyeckas perpeccusi; ¢ — HamBHbI 6aiecoBCKUI KnaccudukaTop.

Fig. 3. Classification of samples by diagnosis (red — meningiomas, blue - gliomas, green — metastases) after PCA: a - support vector
machine; b — logistic regression; ¢ — naive Bayesian classifier.
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Puc. 4. Knaccudukauus o6pa3LoB No AgUarHo3am (KpacHblil — MEHUHITMOMbI, CUHUI — ITIMOMbI, 3eJieHbl — MeTacTa3bl) nocsie NPUMeHe-
Husa LDA: a — meTo onopHbIX BEKTOPOB; b — floructuyecKas perpeccus; ¢ — HaMBHbI 6aecoBCKUI KnaccudukaTop.

Fig. 4. Classification of samples by diagnosis (red - meningiomas, blue — gliomas, green — metastases) after LDA: a — support vector
machine; b — logistic regression; ¢ — naive Bayesian classifier.
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Ta6nuuya 1

PesynbraTthl Knaccubukaumm rmmom ¢ ucnonb3osaHnem LDA n HansHoro baieca

Table 1

Results of glioma classification using LDA and naive Bayes

m qYBCTB“TeanOCTb cneu“d)“qHOCTb

Mo3roBas TkaHb

Brain tissue 100.00%
Onyxonb

Tumor 81.25%
Hekpo3s _
Necrosis

with necrosis, the sensitivity of detecting necrotic tissue
couldn’t be assessed.

If we analyze the biochemical components
(representedinthelogarithminFig.5b) most pronounced
in the classes obtained for gliomas, we see among the
characteristics determined by Raman spectroscopy that
norma corresponds to a higher content of carotenoids,
which are part of the antioxidant defense in healthy
brains, and oxygenated hemoglobin with a much
lower value of total hemoglobin, while we observe the
opposite trends for tumor tissues. For necrosis, we see
a significant excess of phenylalanine over other classes,
which is practically absent in normal tissue.

Conclusion

This study proposes an approach to the construction
of a decision support system based on the formation of a
vector of tissue sample features from diffuse reflectance,
fluorescence and Raman spectroscopy data. Successive
application of dimensionality reduction methods to select
the most significant features, recovery of missing data,
and automatic classification methods such as support
vector machine, logistic regression, and naive Bayes
(based on the assumption of feature independence)
provided glioma detection with a sensitivity of 94.55%
using linear discriminant analysis and logistic regression,

93.75% 94.74%
100.00% 84.21%
89.47% 89.47%

but specificity was below 50%. Using a naive Bayesian
classifier, however, showed an increase in sensitivity to
81%. As a further line of research, it seems necessary
to provide more detailed partitioning of baseline data
by tissue type within each diagnosis according to
pathomorphologic findings.

Summarizing the results of the work on the search
for an alternative and/or burst fluorescence method of
tumor tissue differentiation:

1) For non-fluorescent tumors, the most significant
indicators are the intensity of elastic light scattering
(optical density of tissues decreases due to destructuring
of healthy nervous tissue), carotenoid content (decreases
in tumors), and changes in the ratio of lipid and protein
content.

2) Analysis of the results of classification by
biochemical components allowed us to single out
phospholipids, carotenoids, phenylalanine, hemoglobin
(total and oxygenated) as the most expressed.

3) A classifier on the labeled data can distinguish
between normal and glioma tissues with a sensitivity of
81.25% and 100% specificity.

This work was financially supported by the Ministry of
Science and Higher Education of the Russian Federation
(Agreement No. 075-15-2021-1343 dated October 4, 2021).
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