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Peslome

MoTrBauven npoBefeHNA HaCTOALLEro NCCIeA0BaHNA NOCYKIIa HEOOXOAUMOCTb Pa3BUTUA METO0OB CPOYHON MHTPaonepaLoHHON 6roncum
npw NpoBefeHNN ornepauyvin No NOBOAY YAaNeHVA BHYyTpMYepenHbix onyxonein. Ha ocHoBaHMK onbiTa npeAbiayLleli COBMecTHoN pabotbl MOD
PAH n HMUL, Helipoxmpyprum um. H.H. BypaeHKo no BHeAPEHMIO B KIIMHMYECKYIO MPaKTUKY MeTOA0B ¢GyopecLeHTHON CNeKTpocKonum 6bin pas-
paboTaH noaxop, KOMOVMHMPYIOLLMI Pa3INYHbIE ONTUKO-CNEKTPasibHble METOAMKY, TaK1e KaK CMeKTpocKonva ayTopayopecLeHumm, GryopecteH-
unm 5-AJTK nHpyumposaHHoro npoTtonopdupuHa IX, anddysHoro otTpakeHUs LWNPOKOMONOCHOTO M3/lyYeH)s, N0 KOTOPOMY MOXHO OMNpeaenaTh
KOHLIEHTpaLIo reMoriiobuHa B TKaHAX 1 UX ONTUYECKYHO MIOTHOCTb, CMEKTPOCKOMMUA KOMOVHALMOHHOIO pacceaHus, ABNAIOLWAACA METOAOM Mosle-
KyNAPHOW CNeKTPOCKOMUK, MO3BOMALWMUM AETEKTMPOBaTb PasfiyHble MONIEKYJIbl B TKaHAX 3a cyeTa KonebaHunii OTAeNbHbIX XapaKTepHbIX CBA3ei
B MOJleKy/ax. Takoe pa3Hoobpasuie ONTUKO-CNEeKTPalibHbIX XapaKTePUCTUK 3aTPyAHAET UX HEMOCPEACTBEHHDIV aHaIM3 XMPYProm BO BPeMs ore-
paumu, Kak 3To 06blYHO peannsyeTcs B cylyyae $p1yopecLieHTHbIX METOAOB - MO MPEeBbILLEHNI0 HEKOTOPOro NOPOra NHTEHCUBHOCTY (riyopecLeH-
Lyn € onpefesieHHON CTeNeHbo AOCTOBEPHOCTM MOXHO CYyAWTb O TOM, HAXOAMUTCA I B 30HE NCCIIeA0BaHNA HOPMalibHasA Un OMyXosieBas TKaHb.
B cnyuae, ecnv uncno napameTpoB npeBbllLaeT napy AeCATKOB, HEOOXOAMMO MCMONb30BaHKe anropUTMOB MALLMHHOTO 0OYYeHNA AnA MOCTPOEHNA
cucTeMbl MOAAEPXKKM NPUHATMA PeLLeHUil XMpypra Bo Bpems onepauun. Hactoswasa paboTa npeactaBndeT UCCieoBaHNA B STOM HanpaBieHUM.
MpoBeaeHHbIN HamMK paHee CTaTUCTUYECKUIA aHau3 JaHHbIX OMTUKO-CMEKTPasIbHbIX XapaKTepUCTVK MO3BOMIT BbIAEUTb CTaTUCTUYECKN 3HaUN-
Mble CrieKTpasibHble A1anasoHbl AnA aHanm3a, penpeseHTupyloLme AUarHoCTUYeCKn BaxkHble KOMIMOHEHTbI TKaHeil. MiccnefoBaHUA MeToAoB Mo-
HIPKEHNA pa3MepHOCTU BEKTOPA OMTUKO-CMNEeKTPasibHbIX MPY3HAKOB 11 METOAOB KilacTepusaumnm uccinefyembix 06pasLioB Tak»Ke No3BONUAN Npu-
61131TbCA K peanu3aummn MeToaa aBToMaTyeckon Knaccurkaumm. BaxxHo oTMeTnTb, YTO 3adaya Knaccudukaumm MoxeT ObiTb 1CMOoNb3oBaHa
B ABYX NPUNIOXKEHWAX - AnA AuddepeHuymaLmnm pasnnmyHbix onyxonei u ana anddepeHumannm pasianyHbix Yactern ogHom (LeHTp, nepudokKanbHas
30Ha, HopMma) onyxonu. B HacToAwel paboTe NpefcTaBeHbl pe3yNbTaTbl HALLKIX MCCNIEA0BaHMI B NePBOM HamnpasieHun. Mbl ncciefoBanu coyeTa-
HIe HECKOJIbKIX METOLOB U MoKa3asni BO3MOXHOCTb AnddepeHUmaLmy rmanbHbIX U MEHUHIeasbHbIX OMyXosiel Ha OCHOBaHUV NPeAJSIOKEHHOrO
MeTofja ONMTUKO-CMeKTPasibHOro aHanmsa.
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KoHTakTbi: PomaHunwkmH W.[., e-mail: igor.romanishkin@nsc.gpi.ru
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Abstract

The motivation for the present study was the need to develop methods of urgent intraoperative biopsy during surgery for removal of
intracranial tumors. Based on the experience of previous joint work of GPI RAS and N.N. Burdenko National Medical Research Center
of Neurosurgery to introduce fluorescence spectroscopy methods into clinical practice, an approach combining various optical-spectral
techniques, such as autofluorescence spectroscopy, fluorescence of 5-ALA induced protoporphyrin IX, diffuse reflection of broadband
light, which can be used to determine hemoglobin concentration in tissues and their optical density, Raman spectroscopy, which is a
spectroscopic method that allows detection of various molecules in tissues by vibrations of individual characteristic molecular bonds.
Such a variety of optical and spectral characteristics makes it difficult for the surgeon to analyze them directly during surgery, as it is usu-
ally realized in the case of fluorescence methods - tumor tissue can be distinguished from normal with a certain degree of certainty by
fluorescence intensity exceeding a threshold value. In case the number of parameters exceeds a couple of dozens, it is necessary to use
machine learning algorithms to build a intraoperative decision support system for the surgeon. This paper presents research in this direc-
tion. Our earlier statistical analysis of the optical-spectral features allowed identifying statistically significant spectral ranges for analysis
of diagnostically important tissue components. Studies of dimensionality reduction techniques of the optical-spectral feature vector and
methods of clustering of the studied samples also allowed us to approach the implementation of the automatic classification method.
Importantly, the classification task can be used in two applications - to differentiate between different tumors and to differentiate between
different parts of the same (center, perifocal zone, normal) tumor. This paper presents the results of our research in the first direction. We
investigated the combination of several methods and showed the possibility of differentiating glial and meningeal tumors based on the
proposed optical-spectral analysis method.
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Introduction

Brain tumors are a group of neoplasms arising from
various cells of the central nervous system (CNS) or from
systemic cancers that have metastasized to the CNS. Sys-
temic cancers most prone to metastasize to the CNS in-
clude lung cancer, melanoma, and breast cancer. Primary
brain tumors include a number of histologic types with
notably different rates of tumor growth. Brain tumors
can cause symptoms associated with local invasion of
the brain, compression of neighboring structures, and
increased intracranial pressure.

Determination of tumor type is required at all stages
of treatment for treatment planning and prognosis. One
of the most common methods for automating the di-
agnosis of intracranial tumors is classification based on
proton magnetic resonance spectroscopy data [1]. The
approach based on MRI image analysis is also widely
used to build automatic classification systems [2]. How-
ever, the capabilities of this method are limited and there
is still a high demand for intraoperative techniques for
rapid determination of tissue type in the resection area,
especially such techniques are relevant for intraopera-
tive photodynamic therapy, which is gaining popular-
ity in neurosurgical practice [3, 4]. Optical spectroscopy
methods based on both 5-ALA induced protoporphyrin
IX fluorescence analysis [5-7] or chlorin-based photosen-
sitizers [8] and molecular spectroscopy methods [9, 10]
offer a wide range of possibilities in this field. We have
previously proposed a combined approach integrat-
ing fluorescence and diffuse reflectance spectroscopy

BIOMEDICAL PHOTONICS T. 12, Ne3/2023

[11], and have further developed it by adding analysis of
spontaneous Raman spectra [12, 13].

One of the important advantages of using Raman
spectroscopy is that there is no need to introduce spe-
cial markers into the body, since this method is based on
the analysis of changes in the vibrational energy of the
molecules that make up biological tissues. Therefore, the
very molecular composition of the studied sample serves
as a spectral signature, rather than the level of accumula-
tion of some marker in it. This approach becomes most
diagnostically relevant when performing tissue spectral
analysis of benign tumors, which accumulate 5-ALA in
less than 40% of cases [14], chlorin e6 in less than half of
cases [8]. Thus, proposed approach can be used in the di-
agnosis of nonfluorescent gliomas and other tumors that
are difficult to contrast.

Materials and methods

Experimental design

The experimental design is described in detail in one
of our previous papers [13]. Studies were performed in
the Laboratory of Neurosurgical Anatomy and Preserva-
tion of Biological Materials on tumor tissue samples ex-
tracted during neurosurgical operations, immediately af-
ter removal. Samples from 150 patients with diagnoses of
glioblastoma (n = 60), meningioma (n = 38), astrocytoma
(n=19), oligodendroglioma (n = 19), and metastases (n =
14) were examined. From each patient, 1 to 4 biopsy speci-
mens (total 195 tissue samples) were taken with subse-
quent verification by pathomorphologic examination.
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The summarized measurement procedure consisted
of the following steps (Fig. 1):

1. registration of endogenous fluorescence spectra of
the sample with a 405 nm laser excitation by LESA-
01-BIOSPEC spectrometer;

2. registration of spectra of diffuse reflection of white
light from the sample and fluorescence spectra
of 5-ALA induced protoporphyrin IX in a sample
with a 632.8 nm excitation by LESA-01-BIOSPEC
spectrometer;

3. registration of the spontaneous spectra of the sample
at 785 nm laser excitation with a Raman-HR-TEC-785
spectrometer.

Raman scattering, 5-ALA induced protoporphyrin IX
fluorescence, and diffuse reflectance spectra in the 500-
600 nm region were measured for all samples. Autofluo-
rescence measurements were performed for 163 sam-
ples out of 195.

Since our recent studies on cluster analysis of these
data [15] have shown that without partitioning by di-

agnosis into separate clusters it is possible to separate
tumors of meningeal and glial nature, but not different
gliomas, all glial tumors were combined into one class
in this paper. Fig. 2 shows the scheme of feature vector
formation based on the analysis of diffuse reflectance,
fluorescence and Raman spectra.

Machine learning methods for processing and analyz-
ing spectral data

Biomedical data often have omissions because some
procedures may not have been performed on individual
patients due to individual differences or chance circum-
stances. Other scenarios for the occurrence of these
omissions are also possible. Thus, in our case, the feature
vector was initially generated from Raman spectroscopy,
white light diffuse reflectance and fluorescence spectros-
copy data under excitation at 632.8 nm. However, since in
this study we were more interested in tumors that did not
show contrast by accumulation of 5-ALA induced proto-
porphyrin IX, since it is these tumors that require addi-
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tional features to differentiate them from healthy tissues,
we included the method of recording autofluorescence
under 405 nm excitation. Thus, some of the measure-
ments we have do not contain the full range of features.
To ensure that all samples can be used for classification,
in such cases, the missing features are recovered using in-
formation about their values in those samples that have
them. There are several approaches to data recovery.
One type of interpolation algorithm is univariate inter-
polation, which interpolates the values in the i-th feature
dimension using only the non-missing values in that fea-
ture dimension. One of the simplest examples of this ap-
proach is filling in missing values with the sample mean
of that attribute. This approach does not improve for
these vectors the quality of classification on this feature,
but does not degrade it either, while still allowing these
samples to be used in the analysis. In contrast, multivari-
ate missing data interpolation algorithms use the entire
set of available features to estimate missing values. This
is done by modeling each feature with missing values as
a function of other features and using this estimate for
imputing values. Cluster analysis can also be used to re-
cover missing data. In the present work, we have used
the k-Nearest Neighbors imputer. Each missing feature
is reconstructed using values from n nearest neighbors
that have a value for that feature. Neighbor feature values
are averaged uniformly or weighted by the distance to
each neighbor. If more than one feature is missing from
a sample, the neighbors for that sample may be differ-
ent depending on the specific feature being recovered.
If the number of available neighbors is less than n and
the distances to the training set are not defined, the aver-
age value of the training set for a given feature is used
in the imputation. If there is at least one neighbor with a
certain distance, the weighted or unweighted average of
the remaining neighbors will be used in the calculation.
If a feature is persistently absent from the training, it is
removed during the transformation.

Since we analyze data obtained by different optical-
spectral methods, they require unification and selection
of significant features in the feature vector. To this end,
we performed a two-step dimensionality reduction pro-
cedure [16]. Feature filtering removes features (wave-
lengths, wave numbers, peak positions) that may contain
noise or information that lowers the contrast between
the studied groups. This procedure reduces the dimen-
sionality of the data and focuses on useful information.
The second approach to dimensionality reduction is to
project features onto the new space and discard less
relevant features. We have demonstrated that a feature
pre-filtering step before applying feature projection
techniques for dimensionality reduction significantly
improves classification results. Dimensionality reduction
methods due to feature projection can be categorized
into linear and nonlinear methods. Linear methods in-

clude principal component analysis (PCA) and linear dis-
criminant analysis (LDA). Among the nonlinear ones we
used in this paper are: spectral embedding (Laplacian Ei-
genmaps, SE), t-distributed stochastic neighbor embed-
ding (t-SNE).

Among the methods used in this paper to classify the
labeled data, support vector machine, logistic regression
and Bayesian approach with the assumption of inde-
pendence of features in the vector, referred to as naive
Bayes, were used.

The support vector machine amounts to finding the
hyperplane boundary between classes, that is one di-
mension lower than the number of features. In general,
two groups of objects in the plane can be separated by
a straight line. However, if the boundary between them
has a complex shape, we can artificially increase the di-
mensionality by introducing an additional axis obtained
as a function of one of the features, and in the new space
find a more appropriate separator between classes. This
feature is called the kernel function and its choice can
significantly change the classification results. Logistic re-
gression is also based on dividing the data in the feature
space into groups using some threshold. In linear regres-
sion terms, the class of data is the dependent variable.
The probability of falling into each class is described by
a sigmoid function with a threshold for classification. A
naive Bayesian classifier is based on the application of
Bayes' theorem (which allows us to refine the conditional
probability of an event, e.g., whether an object belongs
to a class based on both a priori probability and new
data) with strict (naive) assumptions about feature inde-
pendence.

Results and discussion

Figs. 3, 4 show the variants of defining tumors by their
type — each illustration shows all the results of different
classifiers for one of the dimensionality reduction meth-
ods. A training sample (50% in each class) was used to
train the classifier, and the sensitivity and specificity of
the classifier were evaluated on the remaining data.

The results show high specificity in detecting men-
ingiomas (i.e,, non-meningiomas falling into non-men-
ingioma classes), but the maximum sensitivity of their
detection does not exceed 50% when combining lin-
ear discriminant analysis as a dimensionality reduction
method and a naive Bayesian classifier.

For distinguishing between normal tissue, tumor tis-
sue, and necrosis, 50% of the samples in each class were
used as a training set. For glial tumors, the sensitivity
varied between 81% and 94%, with the combination of
linear discriminant analysis as a dimensionality reduction
method and naive Bayesian classifier showing the best
results (Fig. 5, Table 1). Due to low number of samples
with necrosis, the sensitivity of detecting necrotic tissue
couldn’t be assessed.

OPUTUHAJIBHbBIE CTATbU
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Puc. 3. Knaccuoukauma obpasuos no aovarHosam (KpacHbli — MEHUHITMOMbI, CUHUWA — FAMOMbI, 3€AeHbIW — MeTacTa3sbl) NOCAe NPUMEHEHUS
PCA: a - MmeToA ONOPHbIX BEKTOPOB; b — AOrUCTUUECKas Perpeccust; ¢ — HauBHbIM 6alecoBCKUI KaaccupuKaTop.

Fig. 3. Classification of samples by diagnosis (red — meningiomas, blue — gliomas, green — metastases) after PCA: a - support vector ma-
chine; b - logistic regression; ¢ - naive Bayesian classifier.

Puc. 4. Knaccuoukauma obpasuoB no aovarHosam (KpacHbli — MEHUHITMOMbI, CUHUWA — FAMOMbI, 3€AeHblW — MeTacTasbl) NOCAE NMPUMEHEHUS
LDA: a - MeToA OMOpHbIX BEKTOPOB; b — AOrMCTUUECKAn perpeccus; ¢ - HauBHbIM 6aecoBCKUIM KnaccudukaTop.

Fig. 4. Classification of samples by diagnosis (red — meningiomas, blue — gliomas, green — metastases) after LDA: a - support vector machine;
b - logistic regression; c - naive Bayesian classifier.

Group / Fpynna
® Tran / Obysanouian
* Test/ Tecrosan
a Diagnosis / Quartoa
.Nﬁnn‘al.i
Hopma
Glioma f
.I’mmm
Macrosis /
[ ey
\
25 oga 25 &0
Laser 633 nm/  Laser 406 nm/ White Light /
10 Nazep 633k Nazep 405 v Baneii teet Raman / PECCEAHME
Puc. 5. a - Pesyabtatbhl Knaccupukauuu TUnos
§ 05 TKaHW TAMOM C WcnoAb3oBaHMeM MeTopa LDA
::'; 1 HauBHoro baneca, b - CpeapHWe HOpMUpPOBaH-
: H uﬂ_#ﬂ Hble 3Ha4YeHUs NPU3HaAKOB B KAaccax B Aorapud-
g% MUUYECKOMN LLKane.

b B2 s Fig. 5. a - Results of tissue type classification of
g g gliomas using LDA and naive Bayes, b - Mean nor-
2 101 malized features in classes in logarithm.

g
5= == == =53 =3 =3 =3 —F
Ez%gg ﬁgggg 24 gf 47 8 31 &l i
HBIBII B EREL B RS
g5 88 E3 & 85 B2 ﬁé‘ i3 #2 8¢ iz
E eE 'Eg g = ECS [ S
5 . g 2g ¢
g &2 °E

BIOMEDICAL PHOTONICS T. 12, Ne3/2023




.0. Pomanuwkun, T.A. CaBenbeBa, A. OcnaHos, K.I'. Jlunbkos, C.B. LLyrai1, C.A. TopsiHos, I.B. MaBnosa,

.H. MpoxuH, B.B. IoLieHoB

Knaccudmkaums BHyTPUYEPenHbIX ONyXosei Ha 0OCHOBE ONTUKO-CNEKTPanbHOIo aHanu3a

Ta6nuuya 1

Pe3ynbTaTthl KNaccudUKauum ravom ¢ ucnonb3osaHmem LDA v HauBHoro bareca

Table 1
Results of glioma classification using LDA and naive Bayes

“ YyBcTBUTENBHOCTD CneundunyHocTb TouyHOCTD

Mo3roBasi TKaHb

0,
Brain tissue 100.00%
Onyxonb a1 95%
Tumor
Hekpo3s _
Necrosis

If we analyze the biochemical components (repre-
sented in the logarithm in Fig. 5 b) most pronounced
in the classes obtained for gliomas, we see among the
characteristics determined by Raman spectroscopy that
norma corresponds to a higher content of carotenoids,
which are part of the antioxidant defense in healthy
brains, and oxygenated hemoglobin with a much lower
value of total hemoglobin, while we observe the oppo-
site trends for tumor tissues. For necrosis, we see a signifi-
cant excess of phenylalanine over other classes, which is
practically absent in normal tissue.

Conclusion

This study proposes an approach to the construction
of a decision support system based on the formation of a
vector of tissue sample features from diffuse reflectance,
fluorescence and Raman spectroscopy data. Successive
application of dimensionality reduction methods to se-
lect the most significant features, recovery of missing
data, and automatic classification methods such as sup-
port vector machine, logistic regression, and naive Bayes
(based on the assumption of feature independence) pro-
vided glioma detection with a sensitivity of 94.55% using
linear discriminant analysis and logistic regression, but
specificity was below 50%. Using a naive Bayesian classi-

93.75% 94.74%
100.00% 84.21%
89.47% 89.47%

fier, however, showed an increase in sensitivity to 81%. As

a further line of research, it seems necessary to provide

more detailed partitioning of baseline data by tissue type

within each diagnosis according to pathomorphologic
findings.

Summarizing the results of the work on the search for
an alternative and/or burst fluorescence method of tu-
mor tissue differentiation:

1) For non-fluorescent tumors, the most significant
indicators are the intensity of elastic light scattering
(optical density of tissues decreases due to
destructuring of healthy nervous tissue), carotenoid
content (decreases in tumors), and changes in the
ratio of lipid and protein content.

2) Analysis of the results of classification by biochemical
components allowed us to single out phospholipids,
carotenoids, phenylalanine, hemoglobin (total and
oxygenated) as the most expressed.

3) A classifier on the labeled data can distinguish
between normal and glioma tissues with a sensitivity
of 81.25% and 100% specificity.

This work was financially supported by the Ministry of
Science and Higher Education of the Russian Federation
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