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Pesiome

Llenb paboTbl - npocnegutb AVHaMIKY N3MeHeHVA GpyopecLeHTHbIX CUTHAIOB B MPUMOBEPXHOCTHBIX CIIOAX TKaHEN TPaBMMPOBaHHbIX YYacTKOB
CMWHbI TA6OPATOPHbIX XKUBOTHBIX, YTO MO3BOJINT, MO KOCBEHHbIM MPU3HaKaM, OLLEHUTb MHGOPMATUBHOCTb (GiyopecLeHTHO ANarHOCTUKN ANA MNo-
CrleAyoLLero BO3MOXHOTO IMarHOCTUYECKOro MOHUTOPUHIa GOTOAUHAMNYECKOI Tepanumn CHHOTO Mo3ra. MoAenbHbIMY KMBOTHBIMU Obln Kpbi-
cbl Buctap. MogenupoBsanoch AABa Tvina KOHTY3WIA: MTHEBMOKOHTY3A 1 KOHTY31A Nagatowum rpysom. OnyopecLeHTHble n3MepeHus NpoBOANINCL
doTorpapruecKkmm 1 CNeKTPOMeTPMYECKMM METOAOM C Mpenapatamui METUSIEHOBbIV CUHWI U MHAOLMAHVH 3eneHblin. ina dotopernctpaumm ¢pnyo-
pecLeHTHOro oTBeTa UCMOJb30BaNCA CTPOOOCKOMUYECKUIA (rlyOPECLEHTHBIN UMUAXKEDP C AJIMHON BONHbI BO30YxAeHMA 630 HM. CneKkTpanbHble
M3MepeHns NPOBOAMNNCH C MoMoLLblo cnekTpomeTtpa JIECA-01-BUOCTIEK, ¢ Bo3byxaeHnem He-Ne nazepom (632,8 Hm). [okasaHo, uto 06a meToga
MO3BOJIAIOT OLIEHVBaTb BENMUMHY driyopecLeHLM METUIEHOBOTO CUHErO 1 MHAOLMaHVHa 3eN1EHOT0 B UCC/ielyeMblX TKaHsAX, a poTorpaduyeckuin
MeTo/] MO3BONIAET TaKXKe MOJyYnTb MPOCTPaHCTBEHHOE pacnpefeneHie payopecueHummn. Obluas TeHAeHUMA, O6HapyeHHasA B MOMyYeHHbIX AaH-
HbIX — bOnee MHTEHCUBHAA 1 paBHOMepHas driyopecLieHLM AopcanbHON 0651acTy KPbIC METUIEHOBbBIM CYHMM, 1 MEHEee MHTEHCUMBHOE, HO 6onee
KOHTpacTHOe pacrnpefeneHne NHAoLnaHrHa 3enéHoro. NpeactaBneHHble MeToAbl HEMHBA3MBHbI, YTO [ieNaeT UX NprBeKaTeNbHbIMY ANA fUarHo-
CTUYeCKOro ucrnosb3oBaHua. OfHaKo 13-3a Manow ry6riHb MpremMa CrrHana CoCTosAHMe NO3BOHOYHMKA MOXHO OMPeAeUTb JIULib KOCBEHHO, MO
COCTOAHMIO MPUMOBEPXHOCTHBIX C/I0EB TKaHel, HakanvBatoLwmx ¢oToceHcmbunmnsaTop.
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Abstract

The purpose of the work is to follow the dynamics of changes in fluorescent signals in the near-surface layers of tissue of injured areas of
the back of laboratory animals, which will allow, by indirect evidence, to evaluate the information content of fluorescence diagnosis for
subsequent possible diagnostic monitoring of photodynamic therapy of the spinal cord. The model animals were Wistar rats. Two types of
contusions were modeled: pneumocontusion and contusion by a falling load. Methylene blue and indocyanine green were used as pho-
tosensitizers. Fluorescence measurements were carried out by imaging and spectrometric methods. A stroboscopic fluorescence imager
with an excitation wavelength of 630 nm was used to acquire fluorescence images. The LESA-01-BIOSPEC spectrometer with a He-Ne laser
excitation allowed to obtain spectra. It was shown that both methods make it possible to estimate the fluorescence value of methylene
blue and indocyanine green in the tissues under study. Moreover, the photographic method also allows to obtain the spatial distribution
of fluorescence. The general trend found in the data is a more intense and uniform fluorescence of the dorsal region of rats with methylene
blue and a less intense, but more contrasting distribution of indocyanine green. The presented methods are non-invasive, which makes
them attractive for diagnostic use. However, due to the shallow depth of signal reception, the condition of the spine can be determined
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only indirectly, by the condition of the near-surface layers of tissue that accumulate the photosensitizer.
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Introduction

Despite the significant efforts of clinicians around the
world, spinal cord injury (SCI) remains one of the most
pressing problems in modern neurosurgery. Thus, the
social and economic consequences of this medical prob-
lem cannot be overstated [1]. Healthcare studies in devel-
oped countries indicate an incidence of SCI of 4-6 cases
per 100,000 inhabitants per year, with severe long-term
consequences for patients and, as a result, a huge impact
on society.

Fluorescence diagnosis is based on the excitation of
fluorescence of a photosensitizer accumulated in bio-
logical tissues and registration of the fluorescent signal
from the tissue under study, followed by analysis. Classi-
cally, this procedure is used to identify foci of neoplasms
of various localizations and their boundaries [2, 3]. In
addition, the method is often used intraoperatively for
navigation during surgery [4, 5]. Moreover, fluorescence
diagnosis can be used, for example, to assess the effec-
tiveness of photodynamic therapy (PDT) (measurements
before/during/after a PDT session) [6, 7]. This possibility is
considered in this work to analyze the prospects of fluo-
rescence diagnosis when performing PDT for spinal cord
injuries. Previously, fluorescence studies have already
been used for the spinal cord to identify and influence
tumor neoplasms [8-10] using various photosensitizers
[11], as well as for invasive studies of a different nature
[12-14].

The purpose of the present work is to follow the dy-
namics of changes in fluorescent signals in the near-sur-
face layers of tissue of injured areas of the back of labo-
ratory animals, which will allow, by indirect evidence, to

evaluate the information content of fluorescence diag-
nosis for subsequent possible diagnostic monitoring of
PDT of the spinal cord.

Materials and Methods

Model animals

The experimental animals were Wistar rats, 2.5-3
months old, females weighing 150-200 g, and males
weighing up to 240 g. Modeling of contusion injury
was carried out in 2 modifications - pneumo contusion
and moderate contusion by a falling weight. Pneumo
contusion was simulated by a blank shot at point-blank
range from an IZH-53M spring pneumatic pistol. When
modeling a moderate contusive spinal cord injury, a
custom-made setup was used. The setup was in the form
of a pipe 50 cm high and 20 mm in diameter, mounted
on a tripod, dropping a cylindrical load weighing 350 g
from a height of 50 cm, which is equivalent to 1.96 N/cm?
in terms of force on the vertebrae. The animal's behavior
was recorded using a Samsung A9 smartphone camera.
Animals were removed from the experiment by immedi-
ate decapitation under chloral hydrate anesthesia. Imag-
ing and spectral measurements of fluorescence were car-
ried out once a day for 4 days, starting from the day of the
simulated injury (1 hour after injury).

Photosensitizers

Fluorescence diagnosis was carried out using two
photosensitizers - methylene blue (MB) and indocyanine
green (ICG). Drug administration regimens are presented
in Table 1.
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Ta6nuuya 1

Pexxum BBeaeHUA GpoToceHCUbUAM3aTopoB
Table 1

Modes of administration of photosensitizers

mw

BHYTPVIOPIOLWNHHO 20 mr/kr
MB intraperitoneally 20 mg/kg
n3 BHYTPVIOPIOLNHHO 10 mr/kr
ICG intraperitoneally 10 mg/kg

* MC - meTuneHoBbIn cnHUii, ICG — MHAOLMAHUHOBBIN 3€M1IEHDIN.
* MB — methylene blue, ICG - indocyanine green.

For a better understanding of the working ranges of
the technique under study, see the emission spectra of
the photosensitizers used in the work [15] and the fluo-
rescence spectra of endogenous fluorophores [16, 17].

Equipment

For photographic registration of the fluorescence
response of photosensitizers and endogenous fluoro-
phores, a stroboscopic fluorescence imager (SFl) was
used. The SFI consisted of a red LED with a central wave-
length of 630 nm and an optical power of 1 W to excite
the fluorescence of light-sensitive components accumu-
lated in biological tissues, two white LEDs (with an opti-
cal power of 200 mW each) to create uniform illumination
of the surgical field, as well as one violet LED (not used in
this study) (Fig 1a). The spectrum of the red LED was cor-
rected by a bandpass filter with a central wavelength of
636 nm. A long pass filter (LPF) with a cut-on frequency
of 660 nm was installed in front of the camera lens. SFl al-
lowed to obtain pairs of frames: one frame with the fluo-
rescence excitation LEDs and backlight LEDs turned on
(respectively, with fluorescence) and the other with only
backlight LEDs turned on (background frame). Subtract-
ing the background frame helped to reduce the impact
of background light.

Spectral measurements of fluorescence of tissues of
laboratory animals were carried out using a LESA-01-BIO-
SPEC spectrometer Fig. 1b (BIOSPEC, Moscow, Russia)
connected to a He-Ne laser with a radiation wavelength
of 632.8 nm.

Caetoauog 405 Hm I‘.

epa ¢ hunsTpom

%&&?

wan 630 Hv © unsTpoM
LED with a fifter

Pa3 B geHb, nepen ¢pnyopecLeHTHOM
10 OWNArHOCTUKNOWN, B TeueHne 4 oHeln
once a day before FD for 4 days
Pa3 B geHb, nepep GpnyopecLeHTHON
5 ONArHOCTUKNOW, B TeueHne 4 OHeln
once a day before FD for 4 days

Fluorescence index

The fluorescence index (Fl) was used to quantify fluo-
rescence intensity when processing spectral data. It was
calculated by dividing the area under the fluorescence
spectrum curve by the area under the scattering spec-
trum curve of the excitation He-Ne laser.

Results

To distinguish the spectra of photosensitizers from
the spectrum of endogenous fluorophores in Fig. 2 a
spectrum taken on an intact animal is shown.

Fluorescence images

Below are examples of fluorescence images obtained
in the area of spinal cord injury in laboratory animals ob-
tained with SFI (Fig. 3).

Spectra

Below are the examples of obtained spectra from the
region of spinal cord injury in laboratory animals, ob-
tained using a spectrometer for the methylene blue (MB)
(Fig. 4) and indocyanine green (ICG) (Fig. 5).

Fig. 4a shows spectra and diagrams of fluorescence
signals obtained in an area away from the injury (healthy
area). Fig. 4b shows spectra and diagrams of fluores-
cence signals taken in the area of injury (trauma area).
Histograms express fluorescence indices (Fl) (see descrip-
tion in the “Materials and Methods” section) for the cor-
responding rat on different days in chronological order
(day 1 - day 4) and characterize the accumulation of the

Puc. 1. AnarHoctuyeckoe obopy-
AOBaHUe: a - CTPO6OCKONUYECKUN
dayopecueHTHbIN umupkep (CON);

Fig. 1. Diagnostic equipment: a -
stroboscopic fluorescence imager
(SFI); b - spectrometer LESA-01
BIOSPEC.

b - cnektpomeTp AECA-01 BUOCIEK.
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photosensitizer in the study area. The histogram columns
correspond in color to the presented spectra.

The “norm” was considered to be the area of the back
located at a distance from the area of the animal’s injury.
The “trauma” was considered to be the directly injured
area of the back.
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Fig. 2. Fluorescence spectrum of an intact animal dorsal area.

The distinctive fluorescence peak of indocyanine
green was recorded around 880 nm (Fig. 5). In some spec-
tra, this peak was nearly indistinguishable from the tissue
autofluorescence spectral signal, which did not allow reli-
able analysis.

Discussion

The study showed that both methods under consid-
eration can reliably detect the fluorescence signal from
methylene blue, both in the area of injury and in normal
conditions. The general trend, noticeable both in the
spectra and in the images, is a more intense (in the case
of spectra) and brighter and uniform (in the case of im-
ages) fluorescence of the dorsal region of rats with meth-
ylene blue than with indocyanine green. The relatively
weak signal from indocyanine green is explained by the
suboptimal wavelength of the exciting radiation (636
nm at SFl and 632.8 at spectral measurements), which
in the wavelength range is located closer to the absorp-
tion band of methylene blue. However, it is worth noting
that in the case of indocyanine green, a more contrast-
ing fluorescence pattern is observed in the images. This
stronger contrast in measurements can be explained by
its accumulation in the main vessels and lymph flows.
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MOAEAUPYEMOMN TPaBMbl CIIMHHOTO MO3ra
(BKAOUAA AeHb TpaBMbl).

Fig. 3. Examples of SFI fluorescence im-
ages of methylene blue (MB) and indocy-
anine green (ICG) obtained on laboratory
animals during studies on days 1-4 after
simulated spinal cord injury (including
the day of injury.
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Fig. 5. Examples of indocyanine green (ICG) fluorescence indexes
and fluorescence spectra obtained from normal area and the area
of trauma.

Analysis of the averaged data results shows that on
the first day of measurements (immediately after injury)
the strongest MB and ICG fluorescence signal is visible in
the injured area, which is explained by the fact that the
increase in edema and the formation of hematomas oc-
cur gradually, therefore, there were fewer obstacles to
detecting the signal in the injured area than in the follow-
ing days. In subsequent days, the intensity of the fluores-
cence signal in the area of injury decreases. In the normal
area, the signal decreases more slowly and almost imper-
ceptibly, and the fluorescence intensity is lower than in
the injured area. The results obtained in the form of im-
ages show a similar picture: the injury attenuation func-

tion is ahead of the normal attenuation function, due to
which the contrast of the injury against the normal back-
ground in frames obtained with SFl is reduced.

Also, intense fluorescence of both drugs was ob-
served both in hematomas and in areas of skin damage
after shaving, which may be caused by the accumulation
of the drug circulating in the bloodstream in hyperemia.
Therefore, in future experiments, the rats should be de-
pilated instead of shaving to avoid adding damage to the
skin and thus introducing uncertainty into the experi-
ment.

Conclusion

The presented methods are non-invasive, which
makes them attractive and promising for diagnostic use.
However, due to the shallow depth of signal reception,
the condition of the injured spine can be determined
only indirectly, by the fluorescence signals from the near-
surface layers of the back accumulating photosensitizers.
However, detecting the difference in the fluorescence
signals from the “normal” area and the area of injury, as
well as in the dynamics of the signal by day, makes it pos-
sible to detect and evaluate the degree of hematoma
healing and reduction of hyperemia, which are often in-
distinguishable to the naked eye. This suggests that the
method can be potentially used to control PDT in spinal
cord injuries.
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