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Abstract

Literature review reflects the current status and development status of intraoperative photodynamic therapy in neurooncology and discusses the
results of the most important studies on photodynamic therapy (PDT). We searched the Pubmed, EMBASE, Cochrane Library and eLibrary data-
bases for publications published between January 2000 and December 2022. Found 204 publications in foreign sources and 59 publications in
domestic editions, dealing with the issues of photodynamic therapy in neurooncology. An analysis of the literature has shown that intraoperative
PDT in neurooncology is an important tool that contributes to increasing the radicality of the operation and local control. The basic rationale for the
effectiveness of PDT lies in the study of the pathways leading to the complete devitalization of a malignant tumor, the study of the mechanisms of
the local and systemic immune response. In addition, subcellular targets in PDT are determined by the properties of photosensitizers (PS). Second
generation PSs have already been introduced into clinical practice. The effectiveness of PDT using photoditazine, 5-aminolevulinic acid has been
demonstrated. The mechanisms of action and targets of these PS have been established. In Russia, a number of studies have repeatedly shown
and proved the clinical effectiveness of PDT in groups of neurooncological patients with glial tumors and secondary metastatic tumors, but so far,
the method has not been included in the clinical guidelines for the provision of high-tech neurosurgical care. There is certainly a need for further
development of PTD techniques in neurooncology, especially in patients at high risk of recurrence and aggressive CNS tumors.

Key words: photodynamic therapy, photosensitizer, photoditazine, 5-ALA, neurooncology, apoptosis, necrosis, meningioma, recurrence, glioblas-
toma, metastasis.

Contacts: Nechaeva A.S., e-mail: nechaeva_as@almazovcentre.ru

For citation: Olyushin V.E., Kukanov K.K., Nechaeva A.S., Sklyar S.S., Vershinin A.E., Dikonenko M.V., Golikova A.S., Mansurov A.S., Safarov B.Il, Rynda
A.Y,, Papayan G.V. Photodynamic therapy in neurooncology, Biomedical Photonics, 2023, vol. 12, no. 3, pp. 25-35. doi: 10.24931/2413-9432-2023-12-
3-25-35.

P OTOOAMHAMMYECKAS TEPAMNS B HEMPOOHKOJIOTUU

B.E. Onowwmn', K.K. KykaHos', A.C. Heuaesa'?, C.C. Cknsp', A.D. BepwmuuH',

M.B. Oukonenko', A.C. lonukosd', A.C. Mancypos!, b.1. Cadapos’,

A.lO. Puinad', IB. Manasn®

1«Poccnitckuin HaYYHO-UCCNENOBATENBCKUIA HEMPOXMPYPIUUYECKMM MHCTUTYT MMEHM

npod. AJl. Monenosa» — dunman GIEY «HMULL um. B. A. Anmasosa» Munsapasa Poccuu,
Cankr-lNeTepbypr, Poccua

2HayuHbll LeHTp MMpoBoro yposHa «LleHTp nepcoHanuanpoBaHHOM MeamLMHbI»

DIBY «HMULL um. B. A. Anmasoea» Munsapasa Poceun, Cankt-IMNetepbypr, Poccus
S«HMUL, um. B. A. Anmasosa» Munsapasa Poccnn, Carnkr-lNMetepbypr, Poccus

Pesiome
BbinonHeH 0630p nuTEpaTypbl, OTPaXKaloLMii COBPEMEHHOE COCTOAHNME 1 CTeMEHb Pa3paboTaHHOCT METOAVKU NHTPaonepaLMoHHO GoTo-
AnHamuyeckon Tepanuu (OAT) B HelipooHKonoru. MNpeacTaBieHbl K 06cyxaeHMI0 pe3ynbTaTbl Hanbonee 3HaYMMbIX MCCNe0BaHNIA, MOCBA-
weHHbIXx OAT B HelpooHKonoruu. [poBeAeH aHanm3 Hay4HbIX My6nvKaLuii No faHHON TemaTuke B 6a3ax faHHbIx Pubmed, EMBASE, Cochrane
Library un eLibrary, ony6nnkoBaHHbIX B MPOMeXXyTOK BpemeHH ¢ AHBapsA 2000 r. no aekabpb 2022 r. HangeHo 204 ny6nvkauum B 3apy6exHbix
NCTOYHUKaxX 1 59 ny6nmnkaLmin B oTe4ecTBeHHbIX N3AaHUAX, B KOTOPbIX PacCMaTpKBaloTCA BOMPOCh! NpuMeHeHna OT B HENPOOHKONOrN.
AHanus nuTepaTtypbl MOKasas, YTo B KIIMHUYECKOW MpaKTrKe nHTpaonepauynoHHaa OIT B HePOOHKONOTM ABNAETCA BaXHbIM NHCTPYMEH-
TOM, CMIOCOOCTBYIOLUM YBEIMYEHUIO PaAVKaIbHOCTY OnepaLni 1 JIoKanbHOro KoHTponsa. OyHaaMeHTanbHoe 060cHOBaHMe SGPEKTVBHOCTH
O[T 3aknoyaeTca B U3yyeHU NyTen, BeAyLwmx K MONHOW AeBUTaNM3aLMmn 3710Ka4eCTBEHHON OMyXOMu, U3yYeHNN MEXaHU3MOB SI0KalbHOTO
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1 CUCTEMHOTO MMMYHHOrO oTgeTa. [1pn 3Tom cybkneTouHble muweHn npu OAT obycnosneHbl cBocTBaMU poToceHcnbrnmsatopos (OC).
B MHOroumcneHHbIx nccnefoBaHuAX NokasaHa npoTuBoomnyxonesasa 3GdekTMBHOCTL ucnonb3oBaHua OAT ¢ ®C Ha ocHoBe xnopuHa €6,
5-aMVHONEBYIMHOBOW KUCIIOTbI, MPOV3BOAHbIX MOPGMPUHOB. YCTaHOBIEHBI MEXaHU3Mbl AeicTBUA 1 MuwweHn 3tnx OC. B Poccun B page
NCCefOBaHN NOATBEPXKAEHA KNMHMYecKan addekTmBHocTs OAT y rpynn HENPOOHKONOMMUYECKMX NMAaLMEHTOB C MnanbHbIM OMYyXONAMU U
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Introduction

One of the most challenging tasks in oncology is
the treatment of malignant tumors of the central ner-
vous system (CNS). The average life expectancy of such
patients after surgery, even with adjuvant therapy, is,
on average, 14 months for glioblastoma multiforme and
25 months for anaplastic astrocytoma. Despite the suc-
cesses of recent decades in understanding the funda-
mental principles of the mechanisms of neurooncogen-
esis, over the past 30 years the average life expectancy
of patients has increased by only 2-4 months [1-3]. That
is why it is necessary to develop alternative methods of
treating neuro-oncology patients.

The study and development of photodynamic ther-
apy (PDT) techniques for the treatment of malignant
brain tumors in the Russian Federation began at the Rus-
sian Neurosurgical Research Institute (RNSI) named after.
prof. A.L. Polenov back in 2001, where the foundations
were laid and the first patents were obtained, and a pro-
tocol for the use of PDT in patients with glial tumors was
developed [4, 5].

Outside the Russian Federation, research on the use
of PDT in neuro-oncology began back in the 1990s [6].
However, at the moment, in many countries, the use of
PDT for the treatment of malignant brain tumors remains
within the framework of research activities. An exception
is Japan, where since September 2013, PDT has been
approved as a new and effective technique for increas-
ing the degree of radicalization of surgical treatment
of malignant glial tumors and has been included in the
standards of medical care [7]. There are also literature
data on the effectiveness of intraoperative PDT in the
treatment of malignant meningiomas (median survival is
reported to reach 23 months), however, reports are rare
and patient groups are small [8].

In our opinion, at the present stage of development
of the subject and further progress in PDT technology in
neuro-oncology, the relevant directions are: minimizing
the effect on healthy tissue, developing new generations

of photosensitizers (PS), optimizing routes for delivering
PS to target points, and developing new fiber-optic tech-
nologies. The main goal of this work is to present the cur-
rent state and degree of development of intraoperative
PDT in neuro-oncology based on the analysis of domes-
tic and foreign literature, and to discuss the results of the
most significant studies on PDT. The review examines
the principles, advantages and disadvantages of PDT in
the structure of complex treatment of malignant brain
tumors, types of PS and methods of its delivery to the
central nervous system, modern fiber-optic technologies
in PDT, and demonstrates possible directions for further
development of PDT technology in neuro-oncology.

The search of the studies published from January
2000 to December 2022 was performed in the Pubmed,
EMBASE, Cochrane Library and eLibrary databases, using
the query “photodynamic*[ti] AND therapy*[ti] AND
(brain tumor* [ti] OR gliom*[ti] OR glioblastoma*[ti] OR
meningiom*[ti] OR brain metast*[ti])” for foreign works
and the keywords “photodynamic therapy AND (glio-
blastoma* OR gliomas* OR meningiomas* OR brain OR
intracerebral metastases*)” for domestic ones. During
the search, duplicate articles in different databases have
been excluded, only peer-reviewed publications, exclud-
ing abstracts and publications based on conference pro-
ceedings, have been included.

204 publications were found in the Pubmed, EMBASE,
and Cohrane Library databases, of which 26 were review
articles, and only 2 systematic reviews that met the
requirements of the international PRISMA system. In the
elibrary database, issues of PDT in neuro-oncology are
discussed in 59 publications. This work analyzes litera-
ture data from both foreign and domestic authors.

Photosensitizers

Photosensitizers (PS) are one of the three main com-
ponents of PDT. Properly selected PSs must meet a num-
ber of requirements, including the absence of systemic
toxicity, selective accumulation in tumor tissue and acti-
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vation at light wavelengths sufficient for deep penetra-
tion into brain tissue, minimal exposure to surrounding
brain tissue, ease of administration of the drug into the
patient’s body, and clear visible fluorescence when visu-
ally assessing the degree of PS accumulation [9].

According to the publications, there are three gener-
ations of photosensitizing compounds [10, 11]. The mol-
ecules of the first generation of PS (photofrin, temopor-
fin, verteporfin) consist of naturally formed porphyrins,
including hematoporphyrin (HpD). These compounds
are activated at wavelengths of about 400 nm [12]. First
generation PS drugs have a number of significant disad-
vantages: first, they have a low quantum yield of singlet
oxygen, and as a result, lower efficiency; second, they
realize their effect at wavelengths close in spectrum to
natural light, having a pronounced phototoxic effect on
the skin. First-generation PSs have a longer half-life of
the drug compared to next-generation PSs [13].

In neuro-oncology, second-generation PSs are most
often used, such as chlorins (photoditazin, photoran) and
aminolevulinic acid derivatives (alasens). These drugs are
activated by wavelengths of more than 600 nm and are
most effective in generating singlet oxygen species [14,
15]. Recently, borated derivatives of porphyrins and chlo-
rins have been actively studied in connection with the
prospect of their use in PDT. The ability of borated deriva-
tives of chlorin e6 and porphyrin (which are mono-, di- or
tetraanions) to penetrate flat bilayer lipid membranes has
been studied [16]. The advantage of these drugs is the
accumulation of PS mainly in the mitochondria of tumor
cells, which requires less light energy and minimizes side
effects to almost zero. However, these drugs are more
expensive and are yet used in experiments [15-17].

Today, active development of the third generation FS
is underway. There are three main groups of third-gen-
eration PSs, namely, nanotechnological (nanoparticles,
mesoporous structures, etc.), genetically engineered and
carrier-conjugated (antibodies against tumor antigens,
liposomes, vesicles). A number of studies have shown
that third-generation PSs conjugated to specific carriers
are characterized by the most pronounced specificity
and tropism for malignant tumor tissues. For example,
neuropilin-1 (receptor for endothelial growth factor) is
overexpressed in glioblastoma and is involved in tumor
neoangiogenesis. Conjugation of PSs with an antibody
to neuropilin-1 provides a targeted effect on the tumor
and also reduces blood flow in the tumor by approxi-
mately 50% [18].

Conjugation of PSs with an antibody to neuropilin-1
can increase the uptake of PS by tumor cells. In 2020, A.
K. Rajora’s et al. used apolipoprotein E3 nanoparticles
(the E3 chaperone for cholesterol transit in the brain
communicates with low-density lipoprotein receptors
in glioblastoma cells) to facilitate the delivery of PS to
tumor tissue [19].

M.A. Shevtsov et al. (2022) demonstrated that the
membrane-bound protein mHsp70 is present in glio-
blastoma tumor cells but not in healthy cells. The authors
have developed a drug based on an antibody to mHsp70
—the RAS70 peptide conjugated with PS, which will allow
it to be used in the future for intraoperative fluorescence
diagnostics, and possibly for PDT [20, 21].

Methods for delivering
photosensitizers to the brain

The optimal method of drug delivery should be safe,
minimally invasive, easy to learn and use. The main and
alternative routes of drug delivery to the brain currently
used are direct introduction of the active substance into
tumor tissue, installation of an implantable pump sys-
tem, use of devices for drug delivery with temporary dis-
ruption of the integrity of the blood-brain barrier (BBB),
as well as transnasal, intravenous and oral administration
of drugs [18, 22]. The intravenous route of administra-
tion has a number of obvious advantages, but faces the
problem of molecules of active substances crossing the
BBB [18]. Recent scientific advances offer opportunities
to overcome such limitations with varying degrees of
effectiveness. One of the possible solutions to this issue
seems to be the use of phonophoresis. Ultrasound has
demonstrated the potential to deliver drugs non-inva-
sively across the BBB precisely to the desired area [22].
The use of targeted nanoparticles makes it possible to
create the required drug concentration and reduce deliv-
ery time by improving the solubility and bioavailability
of hydrophobic drugs [23].

In addition to the BBB, an obstacle to the delivery of
drugs to the tumor is its heterogeneous and dynamically
changing microenvironment. It is known that the micro-
vasculature in glial tumors has a permeability of 7 to 100
nm, which is significantly less than that of tumors of other
localizations (380-780 nm). To solve this problem, scien-
tists propose using viruses that act as vectors that deliver
the agent of interest [24]. Recently, in molecular medicine
there has been increased interest in the use of quantum
dots (nanomaterial with specific spectral characteristics),
which have unique optical properties that provide high
sensitivity and selectivity [25]. Another possible promis-
ing solution may be the use of magnetic nanoparticles
[26]. Gold nanoparticles coated with covalent glycans,
complementary to the cerebral vascular endothelium,
have shown great potential for the delivery of therapeutic
agents to the central nervous system [27, 28].

Fiber-Optic Technologies

When performing PDT, light of a certain wavelength
and high intensity is required. Absorption of light quanta
by PS molecules in the presence of oxygen leads to pho-
tochemical reactions (reactions of types | and Il). Figure 1
shows a diagram of the reactions that occur during PDT.
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Shown schematically in Fig. 1 singlet forms of oxygen
cause cell death through the mechanisms of necrosis and
apoptosis [29-32]. Both types of reactions occur simulta-
neously, and their effect ratio depends on the oxygen
concentration in tissues, the pH of the environment and
the composition of the substances used [33]. Carrying
out PDT on the bed of a removed tumor increases the
radicality of the operation, since the depth of light pene-
tration, according to various studies, ranges from 5 to 12
mm [34-36]. The effectiveness of PDT, as well as its cyto-
toxicity, is influenced by many factors, including the type
of PS, the administered dose of PS and light dose, as well
as the presence of oxygen and the time interval between
the administration of PS and exposure to light [37, 38].
It is known that tumor cells are often “hypoxic’, and the
main metabolic pathway is anaerobic glycolysis, which is
problematic since PDT requires triplet O, in the ground
state. In order to solve this problem at A.L. Polenov RNSI
proposed creating controlled hyperoxia by increasing
the partial pressure of oxygen in the oxygen-air mixture
to 60%, which increases the formation of singlet oxygen
(patent No. 2318542 dated March 10, 2008) [5].

In the work of D. Bartusik-Aebisher et al. (2022) the
authors proposed a singlet oxygen generator based on
the fiber-optic method for its targeted delivery during
PDT. The goal of the idea is to develop a heterogeneous
device for PDT that uses optical excitation of PS mole-
cules released from the porous ends of a hollow micro-
structured optical fiber through which O, is supplied
[39]. The essence of the work is to develop a methodol-
ogy for bonding porous silicon to a commercially avail-
able hollow microstructured optical fiber, optimizing
the optical coupling between the fiber and the bound
PS, maintaining porosity throughout the bound silicon,
and releasing the PS from the silicon matrix by irradiation
with visible light.
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Fig. 1. Scheme of the course of the
reaction in photodynamic therapy (PS -
photosensitizer).

The modern principle of PDT is the use of a single
source of laser radiation, which is simultaneously used
for photodiagnosis and PDT (the principle of photother-
anostics), thereby ensuring spectroscopic monitoring
of changes in the fluorescence intensity of the PS dur-
ing laser irradiation. This achieves real-time PDT dose
control, which leads to a therapeutic dose of light in the
desired area and reduces photocytotoxicity to healthy
tissues [40].

Clinical effectiveness

Many studies have shown the clinical effectiveness
of surgical tumor resection in combination with PDT
[41]. The article by W. Stummer et al. (2008) described
a case of treatment of a patient with glioblastoma mul-
tiforme of the left frontal lobe who underwent surgical
treatment with radiotherapy and chemotherapy. Twelve
months after tumor resection, tumor recurrence was
detected, and PDT was performed during re-resection.
After oral administration of 5-ALA at a dosage of 20 mg/
kg, irradiation was performed using a diode laser with
a wavelength of 633 nm (with a power of 200 mW/cm?)
in continuous mode (light dose was 1200 J/cm?). Sub-
sequently, the patient lived for 5 years without tumor
recurrence [42, 43]. C. Schwartz et al. (2015) in their
study described a group of 15 patients who underwent
PDT with 5-ALA at a dose of 20 or 30 mg/kg. Irradiation
was carried out with a diode laser with a wavelength
of 633 nm, the average light dose was 12.960 J. Patient
survival was compared with the survival of patients
who underwent only surgical resection of the tumor.
Patients who underwent PDT showed a longer median
disease-free survival, which reached 16 months, while
in the second group this indicator was 10.2 months (p
<0.001). In 6 patients in the PDT group, the duration
of recurrence-free survival was more than 30 months.

28

BIOMEDICAL PHOTONICS T.12, N2 3/2023



Olyushin V.E., Kukanov K.K., Nechaeva A.S., Sklyar S.S., Vershinin A.E.,
Dikonenko M.V., Golikova A.S., Mansurov A.S., Safarov B.I., Rynda AY., Papayan G.V.

Photodynamic therapy in neurooncology

Seven out of fifteen patients were diagnosed with com-
plications in the postoperative period, namely, tran-
sient aphasia and pulmonary embolism [44].

In the study by A.Yu. Ryndy et al. (2023) included
161 patients with a malignant glial tumor of supraten-
torial localization, of which 80 patients underwent PDT
using photoditazine (1 mg/kg). The drug was adminis-
tered intravenously during the induction of anesthe-
sia. To irradiate the removed tumor bed, a Latus laser
unit (ATKUS LLC, St. Petersburg) with a power of 2.5 W
and a wavelength of 662 nm was used. Irradiation was
carried out in a continuous mode, the duration of ther-
apy depended on the area of the bed at the rate of a
therapeutic light dose of 180 J/cm?. The authors of the
work proved that PDT as part of complex therapy for
malignant gliomas of the brain significantly increases
the median overall survival in patients with grade 4
gliomas - up to 20.7 + 4.7 months (comparison group
- 13.5 £ 2.3 months; p =0.0002); and also increases the
median life expectancy without recurrence for patients
with grade 3 gliomas - up to 21.7 £+ 3.4 months (main
group - 15.8 £ 3.1 months; p = 0.0002), and with grade
4 gliomas - up to 11.1£2.1 months (comparison group
- 8.0£2.3 months; p=0.0001) [45].

Ta6nuua

The team at the Royal Melbourne Hospital has the
largest clinical experience in the use of PDT in neuro-
oncology, having studied more than 350 patients with
gliomas. The authors used hematoporphyrin deriva-
tives as PS at a dosage of 5 mg/kg (intravenous admin-
istration). The light dose ranged from 70 to 240 J/cm?. In
patients whose treatment regimen included PDT, 2-year
survival rates for newly diagnosed and recurrent glio-
mas were 28% and 40%, respectively, and 5-year survival
rates were 22% and 34%, respectively [46]. Regarding
the side effects of PDT, as reported by S. Eljamel (2010),
out of 150 patients who underwent PDT using 5-ALA and
Photofrin, complications were identified in 7 patients: 3
(2%) patients developed deep vein thrombosis during
treatment with Photofrin, none with 5-ALA-mediated
PDT; 2 (1.3%) patients developed skin photosensitiv-
ity due to poor light protection in the summer months
(0.6% with Photofrin-mediated PDT). After PDT, 2 (1.3%)
patients developed cerebral edema requiring treatment,
and one (0.1%) patient developed skin necrosis and
wound liquorrhea from a previously irradiated skin flap
[47]. Additional information about the use of various PSs
and the clinical effectiveness of PDT in neuro-oncology is
presented in Table.

CBoJHble cBeleHUs 0 KIMHUYecKoi appeKTUBHOCTU DT/, B HEMPOOHKONOTUU

Table

Summary of clinical effectiveness of FTD in neurooncology

Yucno
nayvieHToB

ABTOp,
rog

®C, posnpoBkKa
(mr/kr)

HeXxenartenbHble
peaxkuuu npu v nocne
AT (na/Her)

MepguaHa o6wen
BbDKMBaeMoCTH
(mec)

Jo3acBera,
(Ax/cm?)

XnopuHbi
Chlorins
S. Stylli, 2005 [48] 78 QoTodpuH | 70-240 Het 14,3
5 Mr/kr No
Photofrin |
5 mg/kg
H. Kostron, 2006 [49] 26 ®ockaH 20 Het 8,5
0,15 mr/kr No
Foscan
0,15 mg/kg
P.J. Muller, 2006 [50] 43 QotodpuH Il 120 Het 1
2 mr/Kr No
Photofrin Il
2 mg/kg
Y. Muragaki, 2013 13 Tananop$uH HaTpua 27 Het 24,8
[51] 40 mr/m? No
Talaporfin sodium
40 mg/m?
J. Akimoto, 2019 74 TananopduH HaTpus 27 Het 25
[52] 40 mMr/m? No
Talaporfin sodium
40 mg/m?
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K. Shimizu, 2018 [53] Tananop¢uH HaTpuA Het He yka3aHa
40 mr/m? No No data
Talaporfin sodium
40 mg/m?

Tatsuya Kobayashi, 70 TananopduH HaTpus 27 Het 16,0
2022 [55] 40 mr/m? No
Talaporfin sodium
40 mg/m?

T. Maruyama, 2016 27 Tananop¢wuH HaTpua 27 Het 24,8
[57] 40 mr/m? No
Talaporfin sodium
40 mg/m?

A.H.Sara, 2015 [59] 30 ®oTonoH 30 Het 15,0
4 mr/kr No
Fotolon
4 mg/kg
MopdupuHbl
Porphyrins
S.W. Cramer, 2020 5-ANK 80-120 Het
[62] 20 mr/kr No
5-ALA
20 mg/kg
W. Stummer, 2008 5-AJIK Het
[64] 20 mr/kr No
5-ALA
20 mg/kg
K. Mahmoudi, 2019 5-ANK Het 18,9
[66] 20 mr/kr No
5-ALA
20 mg/kg

OC - potoceHcmbunumsatop; OAT — poToanHammnyeckasn Tepanus; 5-AJIK - 5-amnHoneBynMHOBasA KucnoTa.
PS - photosensitizer; PDT - photodynamic therapy; 5-ALA - 5-aminolevulinic acid.

30

BIOMEDICAL PHOTONICS T.12, N23/2023



Olyushin V.E., Kukanov K.K., Nechaeva A.S., Sklyar S.S., Vershinin A.E.,
Dikonenko M.V., Golikova A.S., Mansurov A.S., Safarov B.I., Rynda AY., Papayan G.V.

Photodynamic therapy in neurooncology

Discussion

In neuro-oncology, the high rate of recurrence of
malignant tumors is due to both the invasive type of
tumor growth and its cellular resistance to traditional
methods of adjuvant therapy [67, 68]. The cascade
mechanisms that arise as a result of PDT cause alteration
of cell membranes and lead to irreversible damage and
destruction of photosensitized tumor cells. PDT not only
directly affects tumor cells, but also reduces the vascular-
ization (blood supply) of the tumor, causing an inflamma-
tory response that stimulates a local and even systemic
immune response. PDT does not affect the extracellular
matrix, therefore, the tissue healing process is associated
with a minimal risk of scar formation and adhesions, and
the risk of infectious complications is reduced [66]. PDT is
the subject of intensive research, although it has not yet
become widespread in neuro-oncology, and only a few
laboratories in the Russian Federation have transitioned
it to clinical use [69-76].

PDT has been successfully used for more than two
decades, however, in our opinion, the following prob-
lems still remain unresolved:

e Further development of PSs with greater selectivity
of accumulation in tumor cells and tissues is neces-
sary;

e Problem of skin photosensitivity;

e Problem of hypoxicity of malignant tumors;

There are certainly a number of advantages that
determine the relevance and provide incentive for the
further development of PDT technology:

e Low concentration of “free”PS in the body and rapid

elimination;

e Impact on tumor cells adjacent to vital functional
areas of the brain that are inaccessible to surgery;

o Ability to adapt existing endoscopic and micro-
optical techniques with new fiber optic equipment.
The prospect for further development of the topic of
PDT in neuro-oncology is the development of a hybrid
fiber-optic software and hardware complex based on
technologies used in various fields of modern science:
organic synthesis, physics, photochemistry, nanotech-
nology and artificial intelligence.

Conclusion

Due to the high selectivity of action, PDT therapy is
a very promising technique compared to classical treat-
ment methods used in neuro-oncology. Despite sample
size limitations and the small number of randomized
controlled trials, available evidence suggests a positive
effect of PDT on the survival of patients with glioblas-
toma compared with standard therapy.

The main advantage of the PDT method is its high
efficiency and minimally invasive nature. The high selec-
tivity of the effect on brain tumor cells during PDT, the
possibility of spectroscopic control and objectification
of the dynamics of PS accumulation during irradiation
allows to speak of PDT as an effective method for local
control of neoplastic processes in the brain, which in
turn leads to a long recurrence-free period and improve-
ment quality of life of neuro-oncological patients. This
approach in modern neuro-oncology can be considered
as an option of theranostics and has the right to be called
“photodynamic theranostics”.

The work was carried out within the framework of state
assignment No. 123021000128-4 “Development of a new
technology for the treatment of patients with secondary
brain tumors and recurrent meningiomas’.
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