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Abstract

To reduce the frequency of relapses after surgical removal a brain tumor, it is critically important to completely remove all affected areas of the
brain without disrupting the functionality of vital organs. Therefore, intraoperative differential diagnostics of micro-areas of tumor tissue with their
subsequent removal or destruction is an urgent task that determines the success of the operation as a whole. Optical spectroscopy has shown
its advantages over the past decade when used as a tool for intraoperative metabolic navigation. And one of the most promising options for
the development of this technology is spectrally-resolved imaging. Currently, methods of spectrally-resolved imaging in diffusely reflected light
have been developed, for example, mapping the degree of hemoglobin oxygen saturation, as well as fluorescence visualization systems, for both
endogenous fluorophores and special fluorescent markers. These systems allow rapid analysis of tissue by the composition of chromophores and
fluorophores, which allows the neurosurgeon to differentiate tumor and normal tissues, as well as functionally significant areas, during surgery.
No less mandatory are the methods of using spectrally resolved visualization based on mapping characteristics obtained from Raman spectra, but
due to the smaller cross-section of the process, these methods are used ex vivo, as a rule, for urgent analysis of fresh tissue samples. In this paper,
we focus on both the physical foundations of such methods and a very important aspect of their application - machine learning (ML) methods for
image processing and tissues’ classification.
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3apaven, onpepensioLen ycnex onepauyum B Lenom. OnTnyeckas CneKTpoCcKonus 3a NocnefHue AecATUNETE MOKa3asa CBOU NpeunMyLLecTBa
NpU NCMOMNb30BaHNUM B KaYeCTBe HCTPYMEHTa MHTPaonepaLyioHHON MeTabonnyeckomn HaBuraumm. Ml ogHUM 13 Hambonee MHoroobeLaoLwmnx
BAPMWAHTOB Pa3BUTNA 3TON TEXHOJNOTMN ABNAETCA CNEKTPaNibHO-Pa3peLLeHHan Br3yanm3auus. B HacToAL M MOMEHT pa3paboTaHbl METOANKN
KaK CreKTpanbHO-pa3peLleHHON BU3yanusaumm B Andedy3Ho-oTpaxkeHHOM CBETe, NO3BOMAIOLIME, HANPUMEp, KaPTNPOBaTb pacnpeaeneHvie
caTypauum remornobuHa Kncnopogom B 30He MHTepeca, Tak 1 CUCTeMbI Br3yanu3auun ¢ayopecLieHLnm, Kak SHAOTEHHOW, Tak U MHAYLMPO-
BaHHOW BBEEHMEM B OPraHn3m nauveHTa $GnyopecLeHTHbIX MapKepOoB. TN CUCTeMbI 06ecneyrBatoT GbICTPbIN aHanM3 TKaHel Mo CocTaBy
nccnepyembix Xxpomodopos 1 GpnyopodopoBs, NO3BONAA HENPOXMPYPTY BO Bpemsa onepauumn anddepeHLmMpoBaTb OMyxoneBble U HOpMasb-
Hble TKaHW, @ Tak»Ke GYHKLMOHaNbHO 3HauYMMble 30HbI. He MeHee BaXKHbIM HampaBieHMeM NMPUMEHEHUA CNEKTPaNbHO-Pa3peLLEHHON BU3yani-
33K ABNAIOTCA METOAbI, OCHOBAHHbIE HA KAPTVPOBAHUMN XapaKTePUCTUK, NMOJyHYaeMbIX U3 CNIEKTPOB KOMOMHALMOHHOTO paccenHvs, OAHAKO,
B CWJTy MEHDBLLEro CeYeHUs NpoLecca 3T METOAUKM MCMOb3YIOTCA ex Vivo, Kak NpaBuio, Af1A CPOUYHOTO aHanu3a TONbKO YTO yAaneHHbIX
06pasLioB TKaHel. B HacToALel paboTe Mbl cenaem GOKyC Kak Ha pU3NUECKUX OCHOBAHUAX TakuX METOAOB, Tak 1 Ha BECbMa BaXHOM acrekTe
MX MPUMEHEHUA — METOAAX MALUMHHOTO 0ByUYeHNA AA 06PabOTKM TaKMX M306parkeHWI U Knaccuprkaumum TKaHen.

KnioueBble cnoBa: onTuyeckas CNekTpOCKonus, CnekTpanbHO-paspeLleHHan B13yanv3aLms, BHyTpuYepenHble onyxonu, MallviHHoe obyye-
Huie, pnyopecLieHTHasA UHTpaorepaLVoHHasA HaBMrauus, GyopecLeHTHas SHAOMUKPOCKOMMWA, MUKPOCKOMMA KOMOMHALMIOHHOTO pacceaHus,

CARS, CTumynupoBaHHaA PamaHOBCKas ructonorusa, rmnepcnexkTpanbHble |/|306pa>Keva.
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Principles of formation
of spectrally resolved images

Speaking about spectrally resolved imaging in
biomedical applications, it is necessary to have a
good understanding of what physical effects of light
interaction with biological tissues lead to the formation
of these images and why spectral resolution of the
recorded signals is required (Fig. 1).

Light incident on a biological object can be reflected
from the surface (Fresnel reflectance signal Rf) or pass
through without interaction with tissue components
(transmission Tc, so-called ballistic photons), but we
do not consider these trivial cases in this review. From

the diagnostic point of view, we are interested in those
variants of light interaction with the tissue that we
observe in its volume. First of all, it is necessary to keep
in mind that most biological tissues are highly scattering,
so light is scattered in tissues many times (this interaction
is described by such an optical parameter of tissues as
the scattering coefficient My which is a value inverse to
the photon path length in the tissue between scattering
acts). Light scattering depends on the size of scattering
particles relative to the wavelength of incident light, as
well as their concentration, i.e. we can judge about the
structural features of tissues by this parameter. We can
estimate the value of the scattering coefficient by the
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diffuse scattering signal (in the case of registration from
the same side of the tissue from which the illumination
was performed, we speak of diffuse reflectance Rd).
Another important type of interaction is the absorption
of light by the tissue. After light passes through the tissue,
we obtain the diffuse reflectance spectrum due not only
to light scattering, but also to absorption, since part of
the light does not reach the receiver due to absorption,
and part due to the fact that it was scattered in other
directions. Therefore, from the diffuse reflectance signal,
by decomposing the spectrum, it is also possible to
extract the absorption spectrum of the tissue, and hence
the information about the content of major absorbers,
for example, hemoglobin. No less important from the
diagnostic point of view is such type of interaction as
fluorescence of molecules when they absorb the incident
light. We distinguish between Stokes fluorescence (with
energy loss due to internal relaxation) and anti-Stokes
fluorescence (with energy gain), but the first variant is
more probable and is much more often used in medical
applications. In this case, while light scattering can
occur with different probabilities at different angles
(generalized scattering phase functions are indicated
by colored ellipses in Fig. 1), the fluorescence signal is
emitted isotropically along the direction. However, after
that, the fluorescence emission also travels through
the medium, scattering and absorbing repeatedly.
Thus, when recording the fluorescence spectrum from
biological tissues, we must remember that it has been
affected by absorption and scattering and in some cases
will require correction for these factors. A less probable
process, but very valuable from a diagnostic point of
view, is the effect of Raman scattering of light. Raman
scattering is a physical process in which not only the
direction of the incident light but, more importantly, the
energy of the light changes as a result of the interaction.
As in the case of fluorescence, we distinguish between
the Stokes (energy loss) and anti-Stokes (energy gain)
components of Raman scattering. Since the probability
of Stokes scattering is much higher for thermodynamic
reasons, we observe it most often, while the observation
of the anti-Stokes component requires special technical
solutions, which will be discussed below. Since the
energy shift in Raman scattering is associated with
vibrational sublevels of molecules, this signal allows us
to estimate the molecular composition of tissues without
introducing additional markers.

Spectrally resolved imaging systems can be divided
into multispectral and hyperspectral imaging (MSI and
HSI). Familiar examples of spectrally resolved imaging
in everyday life are human color vision and the color
cameras of our smartphones. The three color channels
allow these systems to be classified as multispectral
systems. Multispectral images typically contain between
3 and 10 bands. If more filters with narrower bandwidths

are used, such a system can be called hyperspectral.
Thus, the main difference between multispectral and
hyperspectral images is the number of bands and their
width [1].

In fact, in spectrally resolved visualization, instead of
a single image, we register a hypercube of size HxWxL
(frame height and width, as well as wavelength), i.e. a set
of images, each of which corresponds to the brightness
distribution in a certain spectral range. In this case, each
spatial pixel of such animage contains information about
the spectral distribution at a given point in the field of
view (Fig. 2).

The two main categories of spectral imaging methods
are scan-based and wide-field imaging. Point scanning
(whisk-broom) methods (Fig. 3A) capture spectral data
pixel by pixel. Although this method provides high
spectral resolution, it requires HXW iterations to obtain
a hypercube, which is time-consuming for megapixel
images and limits their use for capturing static scenes
and/or small fields of view. Linear scanning (push-
broom) methods (Fig. 3B) use a linear detector oriented
perpendicular to the scanning direction (e.g., row detec-
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Fig. 2. Difference between multispectral and hyperspectral
images.
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AaHHbIX (A — TOYe4YHOoe CKaHupoBaHue, B — nuHenHoe cKkaHupo-
BaHue, C — cneKTpanbHOe CKaHUpOBaHue).

Fig. 3. Different methods of obtaining hyperspectral data (A —
point scanning, B — line scanning, C — spectral scanning).
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tors scan along columns), and spectral data are collected
row by row. This approach reduces the number of
registrations to the number of rows or columns in the
image, which significantly decreases the registration time
compared to point scanners. These are the most common
systems that are widely used in HSI applications [2].

Wide-field imaging is a method of simultaneously
illuminating and, consequently, detecting the entire field
of view in an array of points (pixels of the detector array).
Compared to scan-based imaging methods, wide-field
imaging eliminates the need for mechanical scanning
and allows a large area to be imaged in a single scan.

Spectral scanning methods (Fig. 3C) are essentially
related to wide-field imaging as they allow one spectral
channel in a hyperspectral cube to be imaged at a
time. For this purpose, it is possible to use a tunable
bandpass spectral filter for sequential acquisition of
two-dimensional images in each spectral channel. It is
possible to implement this principle through filters at
the receiver, as well as time multiplexing of light sources,
for example. Snapshot methods provide a hyperspectral
cube with full spatial and spectral information in a
single exposure. Snapshot acquisition is achieved by
multiplexing the sensor with spatial separation in spatial
and spectral dimensions. It can be several cameras
separated by beam splitters, mosaically arranged filters
on the detector matrix or separation of the detector
matrix into macro zones for different filters.

Video fluorescent systems

At the end of the 20th century, W. Stummer [3]
presented the results of the study of fluorescence of
5-ALA-induced protoporphyrin IX (Pp IX) in patients with
glioblastoma, which initiated a new round of interest in
fluorescence in surgical practice. Pp IX is not injected
itself, but accumulates in tumor tissues as a product of
the metabolism of 5-aminolevulinic acid, which is used
as a drug for administration. This determines a number
of its interesting properties as a tumor marker [4-6].
Another porphyrin-based fluorescent tumor marker
chlorin e6 is promising for application in neuro-oncology
[7]. Since then, the use of Pp IX and chlorin e6 has become
widespread in neurosurgery [8, 9] and has gone beyond
an exclusively spectroscopic technique - in many

neurosurgical clinics and departments, fluorescence
video navigation is a routine part of brain and spinal cord
tumor removal [10].

Fluorescence is the emission of light by an atom or
molecule in an electronically excited state (in particular,
due to light absorption) (Fig. 4). Fluorescence is one
variant of the radiative relaxation of a molecule from an
excited state.

Video systems for fluorescence navigation in neuro-
surgery can currently be divided into wide field of view
and microscopic systems.

The principle of working of systems with a wide
field of view is to illuminate the entire area of interest
with a light source, the wavelength of which coincides
with one of the maxima in the absorption spectrum
of the detected fluorescent markers. For example,
protoporphyrin IX, which is widely used in neurosurgery,
has a strong absorption band in the violet region, the
so-called Soret band, as well as a Q-band of absorption
closer to the window of biological transparency,
therefore, light sources with wavelengths coinciding
with all local absorption maxima of this molecule can
be used for its excitation. For fluorescence detection
a cross filter system is necessary: an illuminating filter
suppressing the excitation light in the spectral range of
fluorescence registration, and an imaging filter installed
before the photodetector suppressing the excitation
light, which is necessary because fluorescence is several
orders of magnitude lower in intensity than the light that
excites it.

Among the systems with a wide field of view, the Opmi
Pentero Carl Zeiss microscope with Blue 400 mode, which
allows to observe fluorescence of Pp IX when excited by
violet light, is actively used in neurosurgical practice.
The main limitation of using this mode is the presence
of blood in the wound, which absorbs visible light in
the short-wave region, preventing it from penetrating
deeper - to the tissues under study. This limitation can
be avoided by using an excitation source not in the
short-wave range of the spectrum, in which most of the
biological molecules absorb light, but, for example, in
the first window of biological transparency in the red
region, as it was proposed in [11]. The authors created
an endoscopic system for visualizing the distribution of

Puc. 4. lnarpamma S16710HCKOr0O C 3HepreTuye-
CKMMM nepexoaamu, UINIOCTPUPYIOLWUMU NPUHLIUN
NnornoLweHns ceeta MONeKynon U UCNycKaHus
¢nyopecueHL1M B CTOKCOBOM 061acCTu.
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Fig. 4. Jablonski diagram with energy transitions
illustrating the principle of light absorption by a
molecule and fluorescence emission in the Stokes
region.
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Pp IX that combines full-color and fluorescence imaging
and calculates the concentration of the photosensitizer
under study in the central region. A system combining
a neurosurgical aspirator and the technique of fiber-
optic spectroscopy and spectrally resolved endoscopy
during surgeries for brain tumor removal was also based
on this technical solution [12]. In this implementation, a
fixed distance from the endoscope end face to the tissue
allows calibrating the system by fluorescence level and
quantifying the fluorophore concentration in the tissue
by signal brightness. Research is also underway on the
use of photo and spectral fluorescence analysis of the
area of spinal cord injury [13] or tumors [14].

In[15],aspectrally resolved video fluorescence system
integrated into a commercial neurosurgical microscope
is presented that allows quantitative estimation of Pp IX
content by correcting the effects of optical absorption
and tissue scattering in the detected fluorescence signal.

Despite the fact that the best delineation of tumor
tissues by fluorescent dye can be observed in high-
grade tumors, a large amount of work is also devoted
to fluorescence navigation in the removal of intracranial
low-grade tumors [16].

Intraoperative microscopy (microscopic imaging with
cellular and subcellular spatial resolution and millimeter
field of view) is also used as a tool for intraoperative
surgical navigation in brain tumor resection. Confocal
microscopy or confocal laser endomicroscopy (CLE)
[17] using portable probes provide in vivo registration
of microstructural images, allowing intraoperative
visualization of structures at depth, in three dimensions,
with histological detail (depending on the fluorescent
markers used). It is based on the principle of optical
scanning by laser beam of the entire field of view and
registration of fluorescent emission through small
apertures (pinholes) placed in the path of light for
selective display of photons from a certain focal plane.

The first results of using the Optiscan FIVE 1 fiber-
optic confocal system (Optiscan Pty Ltd, Australia)
for neurosurgery were published in [18] in 2010. This
device contains a miniature fiber-optic probe, excitation
and fluorescence radiation are transmitted through a
single fiber. The system provides non-invasive image
registration by optical sectioning at a known depth. The
system hasbeenvalidatedin C57/BL6laboratory animals
with GL26 glioblastoma. Fluorescein (0.1% Pharmalab,
Australia) and acriflavine (0.05% Sigma Chemicals,
Australia) were used as fluorescent dyes. Another
example of using the Optiscan system on animals with
C6 glioma and fluorescein as a dye was published in [19].
In addition to fluorescein, the authors also used acriavin,
indocyanine green and fluorescein isothiocyanate
as dyes. Their results allowed morphological analysis
and correlated well with classical histological images
of the same tumor sections. Another work using the

Optiscan intraoperative confocal microscopy system
was performed by Martirosyan et al. on animals with C6
gliomas and indocyanine green as a fluorescent marker
[20].

A study of the method of confocal laser endo-
microscopy with fluorescein was conducted in clinical
conditions on a sample of 33 patients with brain tumors
[21]. A definite breakthrough in this direction was the
study [22] conducted in clinical conditions on patients
with benign glial tumors using Pp IX as a fluorescent
marker; at the same time, due to the peculiarities of
the drug accumulation in cells, it was not a question of
morphological analysis, as it was demonstrated in the
works with fluorescein. The differences between tumor
and normal tissue were determined by the number of
luminous cells in the field of view. However, even in this
case, itis possible to detect some correlation between the
intraoperative picture and the histologic picture obtained
in the laboratory. The work [23] was also performed in
clinical conditions using the same endomicroscope, but
fluorescein administered intravenously immediately
before the endomicroscope analysis procedure was
used as a marker. The results obtained correlated well
with data from classical pathomorphology. A distinctive
feature of this work is the rather broad coverage of
different types of intracranial tumors. Various artifacts
of the intraoperative confocal system, particularly shear
artifacts and blood shielding of the signal, are also
discussed in this paper.

In [24], two contrast agents, fluorescein and 5-ALA
induced protoporphyrin IX with excitation in the
blue range of the spectrum, were used for confocal
laser endomicroscopy (Cellvisio system, Maune Kea
Technologies, Paris, France). This device uses a fiber
optic bundle as a sensor, in which each fiber functions
as a pinhole. One disadvantage of this device is the
inability to adjust the depth of focus, and another is the
autofluorescence of the fiber material when excited at
405 nm, making it difficult to use for excitation of 5-ALA
Pp IXin the Soret band [25]. The study was performed on
a sample of 9 patients, of which 6 had open surgery and
3 had stereotactic biopsy.

Summarizing the features of confocal laser
endomicroscopy systems, it can be seen that structural
analysis close to classical pathomorphology is achieved
usingfluorescein.Inthiscase, fluoresceinis predominantly
an extracellular contrast agent, penetrating only through
the disrupted blood-brain barrier. When malignant
gliomas are observed, it provides an intense fluorescent
background. Cells and intracellular structures are
identified as transparent or darker structures on the
fluorescent background. Erythrocytes are visualized
against the background in the same way. If the distal
end of the probe is not cleaned, artifacts from blood
can reduce image quality and affect the analysis. These
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disadvantages suggest the advantages of using dyes
that are excitable and fluorescent in the red and near-
infrared, such as Pp IX and indocyanine green. Pp IX is a
more tumor-specific dye.

The main obstacle to the widespread use of laser
confocal scanning microscopy in intraoperative analysis
is the scanning principle itself. Sufficiently long scanning
time (on average about 1 second for 1 frame for different
systems) leads to the appearance of shear artifacts and
to a decrease in the decoding properties of the obtained
images. A system combining a spectrally resolved
quantitative imaging device with a wide field of view
and a fluorescence endomicroscope is described in
[26]. Spectral resolution is achieved by using a tunable
liquid crystal filter with a half-width of 20 nm in the
range of 400-720 nm. The system already mentioned
above, Cellvizio (Mauna Kea Technologies), is used as
a fluorescence endomicroscope. In [27], it was shown
that over a wide range of fluorophore concentrations,
the ability of a video system using red light to excite
fluorescence at different depths along the image axis up
to 6 mm below the surface allows resolution of multiple
fluorescent foci at a distance of 2 mmin the same plane or
at different depths along the image axis at a distance of 3
mm. Second-generation CLE systems, such as the ZEISS
CONVIVO (Carl Zeiss Meditec AG, Oberkochen, Germany),
have been specifically designed for neurosurgical use
and have undergone a number of clinical trials in recent
years. CONVIVO has been used in animal models and in
ex vivo and in vivo experiments, confirming its feasibility
with fluorescein as a technology capable of providing
real-time in vivo histopathologic data [28-31].

Hyperspectral imaging in diffuse-reflected light

Biological tissues are mostly strongly scattering
media, i.e. light falling on them is multiply scattered
by fluctuations of the refractive index in the medium.
Part of the light returns to the detector, forming the
so-called diffuse reflectance (DR) signal (Rd on Fig. 1).
Since light is not only scattered in tissues, but part of it
is also absorbed by tissue chromophores, the detected
spectrum carries information about both scattering and
absorbing properties of tissues. The main chromophore
in the visible part of the spectrum is hemoglobin. Due
to differences in the absorption spectrum of hemoglobin
in oxygenated and reduced forms, it is also possible to
estimate the local level of hemoglobin oxygen saturation
using DR spectra.

The work [32] is devoted to the analysis of fresh ex
vivo glioma samples using both a laboratory spectro-
photometer and a hyperspectral system, which is based
on spectral scanning of samples using illumination
by a supercontinuum laser (SCL) filtered by acousto-
optic tunable filters (AOTF). When comparing
spectrophotometry and hyperspectral imaging data,

significant differences were found between individual
regions in two spectral ranges: between 510 and 660
nm (which can be attributed to variations in hemoglobin
concentration and oxygenation) and between 780 and
880 nm (which can be either hemoglobin or cytochrome
c oxidase).

The HELICoiD system is presented in [33, 34]. It consists
of two hyperspectral cameras. The first one operates in
the visible and near-infrared spectral range (400-1000
nm), and the second one operates in the near-infrared
range (900-1700 nm). These cameras are connected
to a scanning device with a push rod. The illumination
system provides cold light from 400 to 2200 nm through
an optical fiber connected to a quartz tungsten-halogen
lamp. The hyperspectral system is based on the line-
scanning method and provides a spectral resolution
of 2-3 nm, allowing identification of tumor tissue and
vascular structures. In [35], the authors performed a
statistical analysis of hyperspectral images of brain tumor
patients from the HELICoiD dataset to identify correlations
between reflectance and absorption spectra of tissue
chromophores, also finding a correlation with cytochrome.
The authors of [36] showed that the spectral bands 440.5-
465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-
615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm, and
884.32-902.51 nm are the most relevant for classification
of brain tumor tissues based on hyperspectral images.

Raman scattering-based visualization

One of the most actively developing areas of
spectral analysis in neuro-oncology at present is Raman
spectroscopy [37-39]. As mentioned above, Raman
scattering not only changes the direction of the incident
radiation, but the probability of this process is lower than
in the case of elastic scattering, and both an increase in
energy (anti-Stokes component) and a decrease (Stokes
component) are possible (Fig. 5).

Raman spectroscopy has many applications in
medicine due to its ability to characterize individual
molecules and biological tissues. Characteristic shifts in
the Raman spectrum correspond to specific vibrational
modes of chemical bonds. For example, the symmetric
stretching mode of -CH, plays an important role in the
characterization of biomedical samples, allowing the
detection of fatty acids [40].

Three characteristic spectral bands in the Raman
spectrum were used in [41] to create a virtual RGB color
scheme. Red (1004 cm™ channel corresponding to
phenylalanine), green (1300-1344 cm™, CH deformations
in protein and collagen) and blue (1600 cm™, C=0 and
C=C of the 1st amide band, lipids and nucleic acids) color
scales encoded the intensities in the corresponding
Raman spectral bands. On such color maps it was
possible to distinguish white matter, gray matter, and
tumor tissue with a diagnostic accuracy of about 90%.
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Spontaneous Raman scattering is the most accessible
method in terms of cost, but due to the low cross section
of the process the signal is too weak and exposure times
on the order of several minutes are required. A number
of approaches improve the sensitivity of the process.
Instead of obtaining broadband Raman spectra in
the range (0-3500 cm™), coherent Raman microscopy
methods increase the signal intensity by targeting a
specific wave number using a second excitation laser
beam to coherently control the vibrational frequency
of the active chemical Raman bonds. The two main
techniques using this approach and applied to brain
tumor imaging are stimulated Raman histology (SRH)
and coherent anti-Stokes Raman scattering (CARS)
microscopy.

A series of works [42, 43] presents the results of
the application of a spectrally-resolved Raman based
visualization technique for the analysis of images
structurally similar to histological hematoxylin-eosin
(H&E) images, but obtained using stimulated Raman
scattering with a dual-wavelength fiber laser with a fixed
pump wavelength of 790 nm and Stokes wavelengths
in the range from 1015 nm to 1050 nm. For Stimulated
Raman Histology (SRH) study, samples were sequentially
scanned at two Raman shifts: 2850 cm™ and 2950 cm’.
Lipid-rich brain regions (e.g., myelinated white matter)
show high signal at 2845 cm™ due to symmetric CH,
stretching in fatty acids. Cellular regions show high
intensity at 2930 cm™ and high S, /S, ratio, indicating
high protein and DNA content. The resulting maps of
the intensity ratios at these two peaks were converted
to pseudocolor using the H&E coloring scheme.
Convolutional neural networks (CNN) were used to
classify the resulting images. This is a very promising
method to use the entire array of currently accumulated
H&E histologic slices as a training sample.

In work [44], CARS microscopy was used to visualize
fresh unfixed and unstained ex vivo specimens from
a mouse model of orthotopic human astrocytoma.
The histologic features shown on CARS images were
comparable to standard H&E histology. Chemically
selective images of lipids (2845 cm™', symmetric CH,
stretching) and proteins (CH, stretching, 2920 cm™;

elastic scattering.

amide | band, 2960 cm™) allowed the delineation of
the brain tumor boundary in a mouse model. The
authors [45] used molecular C-H vibrations in different
cryosectioned brain tumors (glioblastoma, melanoma,
and breast cancer metastases) to assess lipid content
compared to normal brain tissue, demonstrating that all
tumor types have lower CARS lipid signal intensity than
normal parenchyma.

Methodology for the application
of machine learning in analyzing
spectrally resolved images

Machine learning (ML) methods are used for
spectrally resolved images at several levels. First, for
image processing and segmentation, and second, for
data classification. The combination of these methods is
usually combined by the term machine vision. However,
in the case of spectrally resolved images, we have a
hypercube of data, i.e. the dimensionality we operate
on is higher than when analyzing conventional images.
At the same time, the sampling volume, as is often the
case in medical applications, is limited by the image
registration procedure itself.

Typically, to develop effective clinical decisions, Al
models are trained to reproduce expert performance
on large amounts of well-annotated data, leading to
reasonably accurate and reproducible results in medical
image analysis. However, this approach is critically
dependentontheavailability of large annotated datasets.
Strict regulatory restrictions on medical data sharing and
the opportunity cost for physicians to annotate data
make the generation of large datasets far from a trivial
task [46] Several approaches have been used to increase
the amount of available data, such as synthetic dataset
generation [47] or artificial expansion of available
annotated datasets [48]. More non-trivial approaches are
also possible, as in the case of histology based on Raman
spectroscopy, where two characteristic peaks for proteins
and lipids allow the generation of a pseudo-color image
that mimics histological tissue images when stained
with hematoxylin-eosin, which immediately opens
access to huge databases of pathomorphological data
[49]. The method of laser confocal endomicroscopy with
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fluorescein offers a similar expansion of the annotated
data base.

The stage of preprocessing of recorded signals is
critical for successful tissue classification using spectrally
resolved data, including images. In works devoted to
hyperspectral imaging systems, a general algorithm
can be identified, including such stages as formation
of the hypercube of data (regardless of the type of
scanning used), background correction, correction on
the white and dark reference images, spectral correction,
normalization, and often a synthetic full-color image.
When analyzing spectrally resolved images based on the
Raman effect, the algorithm includes removal of “silent”
regions in the spectrum (those that do not contain
characteristic peaks), cosmic rays removal, baseline and
fluorescence correction, normalization.

Hyperspectral imaging has shown remarkable
results as a diagnostic tool for tumor detection in
various medical applications. In [50], using a k-fold
cross-validation approach, they demonstrated that
HSI combined with the proposed processing system
(Table 1) is a promising intraoperative tool for in-vivo
identification and delineation of brain tumors, including
both primary (high and low malignancy) and secondary
tumors. The obtained data were transformed into a
set of spectral and spatial features with subsequent
classification using both classical machine learning and
deep learning methods [51].

An important stage of work with spectral data is the
choice of a dimensionality reduction method. Among
the most commonly used methods are feature filtering
methods based either on a priori data on biochemical
composition of tissues or on the results of statistical
analysis and selection of those features that provide
statistically significant differences between classes
of data. Another widely used approach is the use of
feature projection methods, among which the principal
component analysis (PCA) is the most popular. PCA is
used to project a higher-dimensional data matrix onto a
low-component subspace. It reduces the set of variables
to a smaller set of orthogonal, and thus independent,
principal components in the direction of maximum
variation, i.e., it reduces the dimensionality and preserves
the most significant information for further analysis.
Linear discriminant analysis (LDA) and, somewhat less
frequently, quadratic discriminant analysis (QDA) are
also frequently used for this purpose. The main goal of
linear discriminant analysis (also called Fisher’s linear
discriminant) is to find “axes of discrimination” that
optimally classify data into two or more classes. LDA is
closely related to PCA (Principal Component Analysis) in
that both look for latent axes that compactly explain the
variance in the data. The main difference between PCA
and LDA is that LDA is a supervised method and PCA is
an unsupervised method. PCA looks for predictions that

maximize the variance, and LDA looks for predictions
that maximize the ratio of interclass variance to intraclass
variance. QDA is a classifier with a quadratic decision
boundary, generated by fitting class conditional densities
to the data and using Bayes'rule.

Another way to reduce the dimensionality of the
data is the t-Distributed Stochastic Neighbor embedding
(t-SNE) algorithm. It is a nonlinear dimensionality
reduction method well suited for embedding high-
dimensional data for visualization into a low-dimensional
space of two or three dimensions. In the higher dimension
space, a probability distribution over pairs of points is
constructed in such a way that similar points are assigned
a high probability, and dissimilar points are assigned a
lower probability. And in the lower dimension space, the
algorithm tries to achieve similar probability distribution
by minimizing Kullback-Leibler divergence between two
distributions. t-SNE tries to preserve the relative positions
of points in lower dimensional mapping.

To deal with high-dimensional hyperspectral data,
a dimensionality reduction method with manifold
embedding can also be used. This method uses a
modified version of t-SNE based on deep learning, called
t-SNE with fixed references (FR-t-SNE). This nonlinear
embedding method seeks to preserve local spatial
regularity (nearby pixels have a high probability of
representing the same class) while preserving high-level
global features (pixel classes) [52].

Both classical machine learning methods such as
support vector machine (SVM) method, linear and
quadratic discriminant analysis, ensembles of random
forest (RF)basedalgorithms,andmethodsbasedonneural
networks are used to classify tissues according to the
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Fig. 6. Flowchart of the key steps involved in the analysis of
spectrally-resolved images.
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obtained features (Table 1). SVM method is a supervised
machine learning algorithm that predicts an optimal
hyperplane in n-dimensional space to divide the training
set into several classes. Depending on the problem,
different kernel functions can be defined for the decision
function to add another dimensionality to the data,
allowing better partitioning into classes. The algorithm
proposed in the study [53] used a hybrid approach
that combined both supervised and unsupervised
machine learning methods. First, supervised pixel
classification using SVM was performed. The generated
classification map was spatially homogenized using the
t-SNE dimensionality reduction algorithm and K-nearest
neighbor (KNN) filtering. The information obtained from

Ta6nuuya 1.

the supervised stage was merged with the segmentation
map obtained by clustering. The merging was performed
using a majority voting approach that associates each
cluster with a particular class.

A combined approach was also used in [54]. The
KNN-based filtering algorithm receives an input image
that consists of probability maps estimated by the SVM
classifier and a hypercube representation at one of the
wavelengths generated using a dimensionality reduction
algorithm such as PCA. The result is a classification map
where each pixel is assigned to the most likely class. The
nearest neighbors of a particular pixel are searched in
the feature space, which contains both the pixel value
and spatial coordinates.

MeTtogonorus, ucnonb3lyemas npu KnaccudpuKaumm cnekTpanbHO-pa3peLlleHHbIX U306parKeHnn,

perucTpupyembix B yCA0OBUSIX in Vivo
Table 1.

Methodology used in the classification of spectrally resolved images recorded in vivo

m g L metr Mo

Ayaz 2022 [57] ['CB (J1C) ABTOKOPPENALMN U UHKPeMeHTanbHbIn MIK 3D CNN
HSI (push-broom) The autocorrelation and incremental PCA

Baig 2021 [58] [CB (J1Q) dMnupuyeckas MoaoBas AeKOMMNO3MLUS, BbIOOp Npr3HaKoB SVM
HSI (push-broom) EMD (Empirical Mode Decomposition), feature selection

Cruz-Guerrero, 2020 I'CB (C) PaclmpeHHoe cnenoe n3BeyeHre KOHeYHbIX aemeHToB  Crienoe iMHerHoe

[59] HSI (push-broom) 1 pacnpoCTpaHEHHOCTM pasnoxkeHue

Extended blind end-member and abundance extraction Blind linear
(EBEAE) unmixing, SVM

Ezhov, 2023 [35] ['CB (J10) MK
HSI (push-broom) PCA

Fabelo, 2016 [33] ['CB (J1C) SVM, CNN, RF
HSI (push-broom)

Fabelo, 2018 [53] I'CB (1C) t-SNE SVM, KNN
HSI (push-broom)

Fabelo, 2019 [51] ['CB (NC) DMMMPUYECKII BbIGOP TPEX CMEKTPabHbIX KaHaloB 2D-CNN, DNN
HSI (push-broom) Empirical choice of three spectral channels

Florimbi, 2018 [54] I'CB (J1C) PCA SVM, KNN
HSI (push-broom)

Leon, 2023 [50] rcB PCA SVM, RF, KNN, DNN

HSI
Ravi, 2017 [52] ['CB (cHUMOK) BrnoxeHne MHoroobpasui STF
HSI (Snapshot) Manifold embedding
Ruiz, 2020 [60] I'CB (CHMMOK) SVM, RF

Salvador, 2016 [61]
Sutradhar, 2022 [62]
Torti, 2018 [63]

Urbanos, 2021 [64]

HSI (Snapshot)

I'CB (J10)
HSI (push-broom)

[CB (cHUMOK)
HSI (Snapshot)
I'CB (J1C)

HSI (push-broom)

['CB (cHUMOK)
HSI (Snapshot)

SVM, RF, CNN, KKN
SVM
PCA SVM, KNN

SVM, RF n CNN

*I'CB - runepcnekTpanbHas Busyanusauns, JIC — nuHeliHoe ckaHupoBaHue, MI'K — meTog rnaBHbIX KOMNOHEeHT, JIJA — nnHeiHbIn
IVNCKPUMUHaHTHbIN aHanus, K[ A — KBafpaTUUHbIii AUCKPUMUHAHTHBIN aHanus, SVM — meTop onopHbix BeKTopoB, RF — cnyyvaiiHbii nec, KNN —
metop k 6nmxanwmx cocegeit, CNN — koHBonoUMOHHasA HepoceTb, DNN - rny6okas HelpoceTb, STF — ceMaHTUYeCKni TEKCTOBBIN flec

*HSI - Hyperspectral Imaging, PCA - Principal Component Analysis, LDA - linear discrimimnant analysis, QDA — Quadratic Discriminant Analysis,
SVM - Support Vector Machine, RF — Random Forest, KNN - k Nearest Neighbors, CNN - Convolutional Neural Network, DNN - Deep Neural
Network, STF — Semantic Texton Forest
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A random forest (RF) is an ensemble-based machine
learning algorithm with a teacher that uses decision
trees as a base. For classification tasks, the output of a
random forest is the class selected by the majority of
trees. For regression tasks, the output is the average of
the predictions of the trees. Studies on the use of RF [55,
56] have proved that it is a successful classifier when
hyperspectral images are used.

Convolutional neural networks (CNNs) have an
advantage over classical machine learning methods
in that they actually implement both stages: feature
extraction and classification. In the feature extraction
block, convolutions are performed to detect patterns
in spatial and spectral dimensions, resulting in a 3D
convolutional neural network (3D CNN) [57]. This feature
extraction stage yields a reduced feature vector as output,
which serves as input for the classification stage, where
a number of fully connected layers display a feature to
partition the data into desired classes. The parameters
of convolutional and fully connected layers are trained
in a supervised manner. Deep learning can be applied to

Ta6nuua 2.

tumor identification in both deep fully-connected pixel-
by-pixel and convolutional spatial-spectral configurations
[65]. The 3D CNN model proposed in [57] consists of only
two 3D layers and utilizes a limited number of training
samples (20%), which are further divided into 50% for
training and 50% for validation, and tested blindly (80%)
on the remaining data. This study outperformed the
state-of-the-art hybrid architecture, achieving an overall
accuracy of 99.99%. In [51], both a classifier based on a
two-dimensional convolutional neural network (2D-CNN)
of three convolutional layers, one averaging pooling layer
and one fully connected layer, and a deep neural network
(DNN) (implemented in TensorFlow on NVIDIA Quadro
K2200 GPU and trained using only spectral features of the
samples) were used. Three spectral channels (A42=591.10
nm, A50=620.21 nm, and A80=729.34 nm) were selected
fromthe hypercube to highlight blood vesselsintheimage,
the resulting images were classified using 2D-CNN. The
map of parenchymatous regions was also obtained using
2D-CNN. The hypercube was fed to the 1D-DNN input,
classifying the tissues in the image into four classes: normal

MeToponorus, ucnonb3dyemas Nnpu KnaccudukaLmm cnekrpanabHO-pa3peLlleHHbIX U306paXKeHUin, perncTpupyembix

B YCJIOBUSIX €X ViVvO
Table 2.

Methodology used in the classification of spectrally resolved images recorded ex vivo

MoproroBka
mMaTepuana

Tun curHana

CHUXeHune
pasmepHoOCTMN

MeTtoabi MO

Flrtjes 2023 [66] ex vivo SRH, aByx$oTOHHasA CNN
dnyopecueHums
SRH, two-photon
fluorescence
Hollon, 2021 [43] ex vivo SRH Inception-ResNet-v2 DNN
Hollon, 2023 [42] ex vivo Stimulated Raman ResNet-50 DNN
histology (SRH)
Kast, 2015 [41] ex vivo Raman microscopy (1004 cm™), MHorouneHHas
(785 nm) (1300-1344 cm™), NorncTuyeckas mogenb
(1600 cm™) A multinomial logistic model
Lita, 2024 [70] FFPE Raman microscopy MK, tSNE KNN, DBSCAN, SVM, RF
(532 nm) PCA, tSNE
Morais, 2019 [71] FFPE Raman MrK, AMn, TA LDA, QDA, SVM
microspectroscopy PCA, SPA, GA

Orringer, 2017 [49]

Uckermann, 2020
[69]

3aMOpPOXKeHHbIe
cpesbl
Frozen sections

3aMOpOXKeHHble
Cpesbl, CBEXUN
OUOMNCUIAHbIN
mMaTepuan

Cryosections, ex vivo

fresh biopsies

imaging (785 nm)
Stimulated Raman

MHOrocnonHbIn NnepcenTpoH

scattering (SRS) (MLP)
microscopy Multilayer perceptron (MLP)
CARS, TPEF LDA

*FFPE - duKcmpoBaHHble popmannHoMm 1 3anutble napadrHom npenapatbl TKaHen, SRH - ructonorvsa Ha OCHOBe BbIHYXAEHHOMO
KOMOVHaLUVOHHOTO paccesHus, MK — meToa rnaBHbix KOMMoHeHT, Al — anropyTm nociiefoBaTenbHbIX NPoekuuid, FA — reHeTUJYecKuin

anroputm, CNN - KoHBOMOLUMOHHas HelpoceTb, DNN - rny6okas HelpoceTb.

*FFPE - Formalin-fixed, paraffin-embedded tissue slides, SRH - Stimulated Raman histology, PCA - Principal Component Analysis, SPA — Succes-
sive projections algorithm, CNN - convolutional neural network, DNN - deep neural network.
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tissue, tumor tissue, blood vessels/hypervascularized
tissue, and background. The blood vessel map was then
merged with the 1D-DNN classification map by filling in
the positive mask, and this result was merged with the
parenchyma map using negative mask filling.

Very promising results can be obtained by combining
different approaches. Moving from the works devoted to
spectrally resolved imaging in vivo to ex vivo approaches,
it is necessary to consider several used optical-spectral
modalities at once. In [66], brain autofluorescence and
neoplasia were evaluated at the microscopic level using
stimulated Raman histology (SRH) combined with two-
photon fluorescence. By combining two different optical
effects, Raman scattering and autofluorescence with
two-photon excitation, virtual images similar in structure
to classical histological images obtained by hematoxylin-
eosin staining with corresponding fluorescence images
were obtained. Based on a previously developed
convolutional neural network (CNN) based model [67],
tumor, non-tumor and low quality SRH images were
differentiated, and a heat map was created as an overlay
on the SRH image. Using the CNN heat map, regions
of interest (ROIs) were created and overlaid on the
corresponding autofluorescence image to determine
the average fluorescence intensity in the corresponding
ROI.  Another important technique for visualizing
biological tissues is microscopy based on the principle
of multiphoton fluorescence. The main advantage of this
method of molecular imaging is high spatial resolution
in combination with greater depth of penetration into
the tissue, and this method shows good results even
without the introduction of additional dyes, based
on autofluorescence analysis [68]. Interesting results
were obtained by the authors [69] using a combination
of techniques such as CARS, two-photon-excited
fluorescence (TPEF) and second harmonic generation
on brain tumor cryosections of 382 patients and 28
healthy brain tissue samples. The texture parameters of
these images were calculated and used as input for linear
discriminant analysis. The combined analysis of CARS and
TPEF signal texture parameters proved to be the most
suitable for distinguishing between non-tumor brain
tissues and brain tumors (astrocytomas of low and high
malignancy, oligodendroglioma, glioblastoma, recurrent
glioblastoma, and metastases) with a sensitivity of 96%,

specificity of 100%. To approximate the clinical results,
the results were validated on 42 fresh unfixed tumor
biopsies: 82% of tumors and all non-tumor specimens
were correctly identified. An image resolution of 1 um
was sufficient to distinguish between brain tumors and
non-tumor brain.

The use of forced Raman microscopy with the
construction of a distribution map of the ratio of
protein and lipid peaks makes it possible to construct
a pseudo-hematoxylin-eosin image, i.e., to use the
entire accumulated histological material to classify
the corresponding samples, which was brilliantly
demonstrated in [42, 43].

Conclusion

Optical spectroscopy methods, due to the possibility of
non-damaging interaction of light with biological tissues
and wide possibilities of analyzing the content of various
molecules, markers, and their structural features, are
increasingly used in neurosurgery of intracranial tumors
to solve the problems of intraoperative demarcation of
tumor and healthy tissues. Another trend is the use of
optical-spectral methods as urgent biopsy techniques.
Clinical specialists are already accustomed to working
with medical images, which causes their growing interest
in the expansion of optical-spectral methods into the
field of analyzing spectrally resolved images. However,
the interpretation of such images requires a complex
mathematical apparatus including both methods of
preprocessing of data obtained in spatial and spectral
coordinates, and methods of classification of objects
and tissues in these images in order to determine the
boundaries of tumor tissues during surgery, or their
classification during microscopic examination. This review
considers such spectrally resolved image registration
methods as video fluorescence intraoperative navigation
including endomicroscopy, hyperspectral intraoperative
imaging in diffuse-reflected light, Raman microscopy
methods. Basic machine learning methods used for tissue
classification in neuro-oncology based on the analysis of
such images are also presented.

This work was financially supported by the Ministry of
Science and Higher Education of the Russian Federation
(Agreement No. 075-15-2021-1343 dated October 4, 2021).
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