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Abstract
To reduce the frequency of relapses after surgical removal a brain tumor, it is critically important to completely remove all a�ected areas of the 
brain without disrupting the functionality of vital organs. Therefore, intraoperative di�erential diagnostics of micro-areas of tumor tissue with their 
subsequent removal or destruction is an urgent task that determines the success of the operation as a whole. Optical spectroscopy has shown 
its advantages over the past decade when used as a tool for intraoperative metabolic navigation. And one of the most promising options for 
the development of this technology is spectrally-resolved imaging. Currently, methods of spectrally-resolved imaging in di�usely re�ected light 
have been developed, for example, mapping the degree of hemoglobin oxygen saturation, as well as �uorescence visualization systems, for both 
endogenous �uorophores and special �uorescent markers. These systems allow rapid analysis of tissue by the composition of chromophores and 
�uorophores, which allows the neurosurgeon to di�erentiate tumor and normal tissues, as well as functionally signi�cant areas, during surgery. 
No less mandatory are the methods of using spectrally resolved visualization based on mapping characteristics obtained from Raman spectra, but 
due to the smaller cross-section of the process, these methods are used ex vivo, as a rule, for urgent analysis of fresh tissue samples. In this paper, 
we focus on both the physical foundations of such methods and a very important aspect of their application - machine learning (ML) methods for 
image processing and tissues’ classi�cation.
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Резюме
При проведении хирургических операций по удалению опухолей мозга критически важной для снижения частоты рецидивов явля-
ется полнота удаления всех пораженных участков мозга без нарушения функциональности жизненно важных органов. Поэтому диф-
ференциальная диагностика микроучастков опухолевой ткани с последующим их удалением или деструкцией является актуальной 
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задачей, определяющей успех операции в целом. Оптическая спектроскопия за последние десятилетие показала свои преимущества 
при использовании в качестве инструмента интраоперационной метаболической навигации. И одним из наиболее многообещающих 
вариантов развития этой технологии является спектрально-разрешенная визуализация. В настоящий момент разработаны методики 
как спектрально-разрешенной визуализации в диффузно-отраженном свете, позволяющие, например, картировать распределение 
сатурации гемоглобина кислородом в зоне интереса, так и системы визуализации флуоресценции, как эндогенной, так и индуциро-
ванной введением в организм пациента флуоресцентных маркеров. Эти системы обеспечивают быстрый анализ тканей по составу 
исследуемых хромофоров и флуорофоров, позволяя нейрохирургу во время операции дифференцировать опухолевые и нормаль-
ные ткани, а также функционально значимые зоны. Не менее важным направлением применения спектрально-разрешенной визуали-
зации являются методы, основанные на картировании характеристик, получаемых из спектров комбинационного рассеяния, однако, 
в силу меньшего сечения процесса эти методики используются ex vivo, как правило, для срочного анализа только что удаленных 
образцов тканей. В настоящей работе мы сделаем фокус как на физических основаниях таких методов, так и на весьма важном аспекте 
их применения – методах машинного обучения для обработки таких изображений и классификации тканей.

Ключевые слова: оптическая спектроскопия, спектрально-разрешенная визуализация, внутричерепные опухоли, машинное обуче-
ние, флуоресцентная интраоперационная навигация, флуоресцентная эндомикроскопия, микроскопия комбинационного рассеяния, 
CARS, стимулированная Рамановская гистология, гиперспектральные изображения.
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Principles of formation  
of spectrally resolved images

Speaking about spectrally resolved imaging in 
biomedical applications, it is necessary to have a 
good understanding of what physical e�ects of light 
interaction with biological tissues lead to the formation 
of these images and why spectral resolution of the 
recorded signals is required (Fig. 1). 

Light incident on a biological object can be re�ected 
from the surface (Fresnel re�ectance signal Rf ) or pass 
through without interaction with tissue components 
(transmission Tc, so-called ballistic photons), but we 
do not consider these trivial cases in this review. From 

the diagnostic point of view, we are interested in those 
variants of light interaction with the tissue that we 
observe in its volume. First of all, it is necessary to keep 
in mind that most biological tissues are highly scattering, 
so light is scattered in tissues many times (this interaction 
is described by such an optical parameter of tissues as 
the scattering coe�cient μs, which is a value inverse to 
the photon path length in the tissue between scattering 
acts). Light scattering depends on the size of scattering 
particles relative to the wavelength of incident light, as 
well as their concentration, i.e. we can judge about the 
structural features of tissues by this parameter. We can 
estimate the value of the scattering coe�cient by the 

Рис. 1.  Взаимодействие 
света с биологическими 
тканями.
Fig. 1. Interaction of light with 
biological tissues.
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di�use scattering signal (in the case of registration from 
the same side of the tissue from which the illumination 
was performed, we speak of di�use re�ectance Rd). 
Another important type of interaction is the absorption 
of light by the tissue. After light passes through the tissue, 
we obtain the di�use re�ectance spectrum due not only 
to light scattering, but also to absorption, since part of 
the light does not reach the receiver due to absorption, 
and part due to the fact that it was scattered in other 
directions. Therefore, from the di�use re�ectance signal, 
by decomposing the spectrum, it is also possible to 
extract the absorption spectrum of the tissue, and hence 
the information about the content of major absorbers, 
for example, hemoglobin. No less important from the 
diagnostic point of view is such type of interaction as 
�uorescence of molecules when they absorb the incident 
light. We distinguish between Stokes �uorescence (with 
energy loss due to internal relaxation) and anti-Stokes 
�uorescence (with energy gain), but the �rst variant is 
more probable and is much more often used in medical 
applications. In this case, while light scattering can 
occur with di�erent probabilities at di�erent angles 
(generalized scattering phase functions are indicated 
by colored ellipses in Fig. 1), the �uorescence signal is 
emitted isotropically along the direction. However, after 
that, the �uorescence emission also travels through 
the medium, scattering and absorbing repeatedly. 
Thus, when recording the �uorescence spectrum from 
biological tissues, we must remember that it has been 
a�ected by absorption and scattering and in some cases 
will require correction for these factors. A less probable 
process, but very valuable from a diagnostic point of 
view, is the e�ect of Raman scattering of light. Raman 
scattering is a physical process in which not only the 
direction of the incident light but, more importantly, the 
energy of the light changes as a result of the interaction. 
As in the case of �uorescence, we distinguish between 
the Stokes (energy loss) and anti-Stokes (energy gain) 
components of Raman scattering. Since the probability 
of Stokes scattering is much higher for thermodynamic 
reasons, we observe it most often, while the observation 
of the anti-Stokes component requires special technical 
solutions, which will be discussed below. Since the 
energy shift in Raman scattering is associated with 
vibrational sublevels of molecules, this signal allows us 
to estimate the molecular composition of tissues without 
introducing additional markers.

Spectrally resolved imaging systems can be divided 
into multispectral and hyperspectral imaging (MSI and 
HSI). Familiar examples of spectrally resolved imaging 
in everyday life are human color vision and the color 
cameras of our smartphones. The three color channels 
allow these systems to be classi�ed as multispectral 
systems. Multispectral images typically contain between 
3 and 10 bands. If more �lters with narrower bandwidths 

are used, such a system can be called hyperspectral. 
Thus, the main di�erence between multispectral and 
hyperspectral images is the number of bands and their 
width [1].

In fact, in spectrally resolved visualization, instead of 
a single image, we register a hypercube of size H×W×L 
(frame height and width, as well as wavelength), i.e. a set 
of images, each of which corresponds to the brightness 
distribution in a certain spectral range. In this case, each 
spatial pixel of such an image contains information about 
the spectral distribution at a given point in the �eld of 
view (Fig. 2). 

The two main categories of spectral imaging methods 
are scan-based and wide-�eld imaging. Point scanning 
(whisk-broom) methods (Fig. 3A) capture spectral data 
pixel by pixel. Although this method provides high 
spectral resolution, it requires H×W iterations to obtain 
a hypercube, which is time-consuming for megapixel 
images and limits their use for capturing static scenes 
and/or small �elds of view. Linear scanning (push-
broom) methods (Fig. 3B) use a linear detector oriented 
perpendicular to the scanning direction (e.g., row detec- 

Рис. 2. Различие мультиспектральных и гиперспектральных 
изображений.
Fig. 2. Difference between multispectral and hyperspectral 
images.

Рис. 3. Различные методы получения гиперспектральных 
данных (A – точечное сканирование, B – линейное сканиро-
вание, C – спектральное сканирование).
Fig. 3. Different methods of obtaining hyperspectral data (A – 
point scanning, B – line scanning, C – spectral scanning).

А B C
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tors scan along columns), and spectral data are collected 
row by row. This approach reduces the number of 
registrations to the number of rows or columns in the 
image, which signi�cantly decreases the registration time 
compared to point scanners. These are the most common 
systems that are widely used in HSI applications [2].

Wide-�eld imaging is a method of simultaneously 
illuminating and, consequently, detecting the entire �eld 
of view in an array of points (pixels of the detector array). 
Compared to scan-based imaging methods, wide-�eld 
imaging eliminates the need for mechanical scanning 
and allows a large area to be imaged in a single scan.

Spectral scanning methods (Fig. 3C) are essentially 
related to wide-�eld imaging as they allow one spectral 
channel in a hyperspectral cube to be imaged at a 
time. For this purpose, it is possible to use a tunable 
bandpass spectral �lter for sequential acquisition of 
two-dimensional images in each spectral channel. It is 
possible to implement this principle through �lters at 
the receiver, as well as time multiplexing of light sources, 
for example. Snapshot methods provide a hyperspectral 
cube with full spatial and spectral information in a 
single exposure. Snapshot acquisition is achieved by 
multiplexing the sensor with spatial separation in spatial 
and spectral dimensions. It can be several cameras 
separated by beam splitters, mosaically arranged �lters 
on the detector matrix or separation of the detector 
matrix into macro zones for di�erent �lters.

Video �uorescent systems
At the end of the 20th century, W. Stummer [3] 

presented the results of the study of �uorescence of 
5-ALA-induced protoporphyrin IX (Pp IX) in patients with 
glioblastoma, which initiated a new round of interest in 
�uorescence in surgical practice. Pp IX is not injected 
itself, but accumulates in tumor tissues as a product of 
the metabolism of 5-aminolevulinic acid, which is used 
as a drug for administration. This determines a number 
of its interesting properties as a tumor marker [4–6]. 
Another porphyrin-based �uorescent tumor marker 
chlorin e6 is promising for application in neuro-oncology 
[7]. Since then, the use of Pp IX and chlorin e6 has become 
widespread in neurosurgery [8, 9] and has gone beyond 
an exclusively spectroscopic technique – in many 

neurosurgical clinics and departments, �uorescence 
video navigation is a routine part of brain and spinal cord 
tumor removal [10].

Fluorescence is the emission of light by an atom or 
molecule in an electronically excited state (in particular, 
due to light absorption) (Fig. 4). Fluorescence is one 
variant of the radiative relaxation of a molecule from an 
excited state. 

Video systems for �uorescence navigation in neuro-
surgery can currently be divided into wide �eld of view 
and microscopic systems.

The principle of working of systems with a wide 
�eld of view is to illuminate the entire area of interest 
with a light source, the wavelength of which coincides 
with one of the maxima in the absorption spectrum 
of the detected �uorescent markers. For example, 
protoporphyrin IX, which is widely used in neurosurgery, 
has a strong absorption band in the violet region, the 
so-called Soret band, as well as a Q-band of absorption 
closer to the window of biological transparency, 
therefore, light sources with wavelengths coinciding 
with all local absorption maxima of this molecule can 
be used for its excitation. For �uorescence detection 
a cross �lter system is necessary: an illuminating �lter 
suppressing the excitation light in the spectral range of 
�uorescence registration, and an imaging �lter installed 
before the photodetector suppressing the excitation 
light, which is necessary because �uorescence is several 
orders of magnitude lower in intensity than the light that 
excites it. 

Among the systems with a wide �eld of view, the Opmi 
Pentero Carl Zeiss microscope with Blue 400 mode, which 
allows to observe �uorescence of Pp IX when excited by 
violet light, is actively used in neurosurgical practice. 
The main limitation of using this mode is the presence 
of blood in the wound, which absorbs visible light in 
the short-wave region, preventing it from penetrating 
deeper – to the tissues under study. This limitation can 
be avoided by using an excitation source not in the 
short-wave range of the spectrum, in which most of the 
biological molecules absorb light, but, for example, in 
the �rst window of biological transparency in the red 
region, as it was proposed in [11]. The authors created 
an endoscopic system for visualizing the distribution of 

Рис. 4. Диаграмма Яблонского с энергетиче-
скими переходами, иллюстрирующими принцип 
поглощения света молекулой и испускания  
флуоресценции в стоксовой области.
Fig. 4. Jablonski diagram with energy transitions 
illustrating the principle of light absorption by a 
molecule and fluorescence emission in the Stokes 
region.
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Pp IX that combines full-color and �uorescence imaging 
and calculates the concentration of the photosensitizer 
under study in the central region. A system combining 
a neurosurgical aspirator and the technique of �ber-
optic spectroscopy and spectrally resolved endoscopy 
during surgeries for brain tumor removal was also based 
on this technical solution [12]. In this implementation, a 
�xed distance from the endoscope end face to the tissue 
allows calibrating the system by �uorescence level and 
quantifying the �uorophore concentration in the tissue 
by signal brightness. Research is also underway on the 
use of photo and spectral �uorescence analysis of the 
area of spinal cord injury [13] or tumors [14].

In [15], a spectrally resolved video �uorescence system 
integrated into a commercial neurosurgical microscope 
is presented that allows quantitative estimation of Pp IX 
content by correcting the e�ects of optical absorption 
and tissue scattering in the detected �uorescence signal. 

Despite the fact that the best delineation of tumor 
tissues by �uorescent dye can be observed in high-
grade tumors, a large amount of work is also devoted 
to �uorescence navigation in the removal of intracranial 
low-grade tumors [16].

Intraoperative microscopy (microscopic imaging with 
cellular and subcellular spatial resolution and millimeter 
�eld of view) is also used as a tool for intraoperative 
surgical navigation in brain tumor resection. Confocal 
microscopy or confocal laser endomicroscopy (CLE) 
[17] using portable probes provide in vivo registration 
of microstructural images, allowing intraoperative 
visualization of structures at depth, in three dimensions, 
with histological detail (depending on the �uorescent 
markers used). It is based on the principle of optical 
scanning by laser beam of the entire �eld of view and 
registration of �uorescent emission through small 
apertures (pinholes) placed in the path of light for 
selective display of photons from a certain focal plane. 

The �rst results of using the Optiscan FIVE 1 �ber-
optic confocal system (Optiscan Pty Ltd, Australia) 
for neurosurgery were published in [18] in 2010. This 
device contains a miniature �ber-optic probe, excitation 
and �uorescence radiation are transmitted through a 
single �ber. The system provides non-invasive image 
registration by optical sectioning at a known depth. The 
system has been validated in C57/BL6 laboratory animals 
with GL26 glioblastoma. Fluorescein (0.1% Pharmalab, 
Australia) and acri�avine (0.05% Sigma Chemicals, 
Australia) were used as �uorescent dyes. Another 
example of using the Optiscan system on animals with 
C6 glioma and �uorescein as a dye was published in [19]. 
In addition to �uorescein, the authors also used acriavin, 
indocyanine green and �uorescein isothiocyanate 
as dyes. Their results allowed morphological analysis 
and correlated well with classical histological images 
of the same tumor sections. Another work using the 

Optiscan intraoperative confocal microscopy system 
was performed by Martirosyan et al. on animals with C6 
gliomas and indocyanine green as a �uorescent marker 
[20].

A study of the method of confocal laser endo-
microscopy with �uorescein was conducted in clinical 
conditions on a sample of 33 patients with brain tumors 
[21]. A de�nite breakthrough in this direction was the 
study [22] conducted in clinical conditions on patients 
with benign glial tumors using Pp IX as a �uorescent 
marker; at the same time, due to the peculiarities of 
the drug accumulation in cells, it was not a question of 
morphological analysis, as it was demonstrated in the 
works with �uorescein. The di�erences between tumor 
and normal tissue were determined by the number of 
luminous cells in the �eld of view. However, even in this 
case, it is possible to detect some correlation between the 
intraoperative picture and the histologic picture obtained 
in the laboratory. The work [23] was also performed in 
clinical conditions using the same endomicroscope, but 
�uorescein administered intravenously immediately 
before the endomicroscope analysis procedure was 
used as a marker. The results obtained correlated well 
with data from classical pathomorphology. A distinctive 
feature of this work is the rather broad coverage of 
di�erent types of intracranial tumors. Various artifacts 
of the intraoperative confocal system, particularly shear 
artifacts and blood shielding of the signal, are also 
discussed in this paper. 

In [24], two contrast agents, �uorescein and 5-ALA 
induced protoporphyrin IX with excitation in the 
blue range of the spectrum, were used for confocal 
laser endomicroscopy (Cellvisio system, Maune Kea 
Technologies, Paris, France). This device uses a �ber 
optic bundle as a sensor, in which each �ber functions 
as a pinhole. One disadvantage of this device is the 
inability to adjust the depth of focus, and another is the 
auto�uorescence of the �ber material when excited at 
405 nm, making it di�cult to use for excitation of 5-ALA 
Pp IX in the Soret band [25]. The study was performed on 
a sample of 9 patients, of which 6 had open surgery and 
3 had stereotactic biopsy.

Summarizing the features of confocal laser 
endomicroscopy systems, it can be seen that structural 
analysis close to classical pathomorphology is achieved 
using �uorescein. In this case, �uorescein is predominantly 
an extracellular contrast agent, penetrating only through 
the disrupted blood-brain barrier. When malignant 
gliomas are observed, it provides an intense �uorescent 
background. Cells and intracellular structures are 
identi�ed as transparent or darker structures on the 
�uorescent background. Erythrocytes are visualized 
against the background in the same way. If the distal 
end of the probe is not cleaned, artifacts from blood 
can reduce image quality and a�ect the analysis. These 
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disadvantages suggest the advantages of using dyes 
that are excitable and �uorescent in the red and near-
infrared, such as Pp IX and indocyanine green. Pp IX is a 
more tumor-speci�c dye. 

The main obstacle to the widespread use of laser 
confocal scanning microscopy in intraoperative analysis 
is the scanning principle itself. Su�ciently long scanning 
time (on average about 1 second for 1 frame for di�erent 
systems) leads to the appearance of shear artifacts and 
to a decrease in the decoding properties of the obtained 
images. A system combining a spectrally resolved 
quantitative imaging device with a wide �eld of view 
and a �uorescence endomicroscope is described in 
[26]. Spectral resolution is achieved by using a tunable 
liquid crystal �lter with a half-width of 20 nm in the 
range of 400–720 nm. The system already mentioned 
above, Cellvizio (Mauna Kea Technologies), is used as 
a �uorescence endomicroscope. In [27], it was shown 
that over a wide range of �uorophore concentrations, 
the ability of a video system using red light to excite 
�uorescence at di�erent depths along the image axis up 
to 6 mm below the surface allows resolution of multiple 
�uorescent foci at a distance of 2 mm in the same plane or 
at di�erent depths along the image axis at a distance of 3 
mm. Second-generation CLE systems, such as the ZEISS 
CONVIVO (Carl Zeiss Meditec AG, Oberkochen, Germany), 
have been speci�cally designed for neurosurgical use 
and have undergone a number of clinical trials in recent 
years. CONVIVO has been used in animal models and in 
ex vivo and in vivo experiments, con�rming its feasibility 
with �uorescein as a technology capable of providing 
real-time in vivo histopathologic data [28–31].

Hyperspectral imaging in di�use-re�ected light 
Biological tissues are mostly strongly scattering 

media, i.e. light falling on them is multiply scattered 
by �uctuations of the refractive index in the medium. 
Part of the light returns to the detector, forming the 
so-called di�use re�ectance (DR) signal (Rd on Fig. 1). 
Since light is not only scattered in tissues, but part of it 
is also absorbed by tissue chromophores, the detected 
spectrum carries information about both scattering and 
absorbing properties of tissues. The main chromophore 
in the visible part of the spectrum is hemoglobin. Due 
to di�erences in the absorption spectrum of hemoglobin 
in oxygenated and reduced forms, it is also possible to 
estimate the local level of hemoglobin oxygen saturation 
using DR spectra. 

The work [32] is devoted to the analysis of fresh ex 
vivo glioma samples using both a laboratory spectro- 
photometer and a hyperspectral system, which is based 
on spectral scanning of samples using illumination 
by a supercontinuum laser (SCL) �ltered by acousto-
optic tunable �lters (AOTF). When comparing 
spectrophotometry and hyperspectral imaging data, 

signi�cant di�erences were found between individual 
regions in two spectral ranges: between 510 and 660 
nm (which can be attributed to variations in hemoglobin 
concentration and oxygenation) and between 780 and 
880 nm (which can be either hemoglobin or cytochrome 
c oxidase).

The HELICoiD system is presented in [33, 34]. It consists 
of two hyperspectral cameras. The �rst one operates in 
the visible and near-infrared spectral range (400–1000 
nm), and the second one operates in the near-infrared 
range (900–1700 nm). These cameras are connected 
to a scanning device with a push rod. The illumination 
system provides cold light from 400 to 2200 nm through 
an optical �ber connected to a quartz tungsten-halogen 
lamp. The hyperspectral system is based on the line-
scanning method and provides a spectral resolution 
of 2–3 nm, allowing identi�cation of tumor tissue and 
vascular structures. In [35], the authors performed a 
statistical analysis of hyperspectral images of brain tumor 
patients from the HELICoiD dataset to identify correlations 
between re�ectance and absorption spectra of tissue 
chromophores, also �nding a correlation with cytochrome. 
The authors of [36] showed that the spectral bands 440.5–
465.96 nm, 498.71–509.62 nm, 556.91–575.1 nm, 593.29–
615.12 nm, 636.94–666.05 nm, 698.79–731.53 nm, and 
884.32–902.51 nm are the most relevant for classi�cation 
of brain tumor tissues based on hyperspectral images.

Raman scattering-based visualization
One of the most actively developing areas of 

spectral analysis in neuro-oncology at present is Raman 
spectroscopy [37–39]. As mentioned above, Raman 
scattering not only changes the direction of the incident 
radiation, but the probability of this process is lower than 
in the case of elastic scattering, and both an increase in 
energy (anti-Stokes component) and a decrease (Stokes 
component) are possible (Fig. 5).

Raman spectroscopy has many applications in 
medicine due to its ability to characterize individual 
molecules and biological tissues. Characteristic shifts in 
the Raman spectrum correspond to speci�c vibrational 
modes of chemical bonds. For example, the symmetric 
stretching mode of -CH2 plays an important role in the 
characterization of biomedical samples, allowing the 
detection of fatty acids [40].

Three characteristic spectral bands in the Raman 
spectrum were used in [41] to create a virtual RGB color 
scheme. Red (1004 cm-1 channel corresponding to 
phenylalanine), green (1300–1344 cm-1, CH deformations 
in protein and collagen) and blue (1600 cm-1, C=O and 
C=C of the 1st amide band, lipids and nucleic acids) color 
scales encoded the intensities in the corresponding 
Raman spectral bands. On such color maps it was 
possible to distinguish white matter, gray matter, and 
tumor tissue with a diagnostic accuracy of about 90%.
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Spontaneous Raman scattering is the most accessible 
method in terms of cost, but due to the low cross section 
of the process the signal is too weak and exposure times 
on the order of several minutes are required. A number 
of approaches improve the sensitivity of the process. 
Instead of obtaining broadband Raman spectra in 
the range (0–3500 cm-1), coherent Raman microscopy 
methods increase the signal intensity by targeting a 
speci�c wave number using a second excitation laser 
beam to coherently control the vibrational frequency 
of the active chemical Raman bonds. The two main 
techniques using this approach and applied to brain 
tumor imaging are stimulated Raman histology (SRH) 
and coherent anti-Stokes Raman scattering (CARS) 
microscopy.

A series of works [42, 43] presents the results of 
the application of a spectrally-resolved Raman based 
visualization technique for the analysis of images 
structurally similar to histological hematoxylin-eosin 
(H&E) images, but obtained using stimulated Raman 
scattering with a dual-wavelength �ber laser with a �xed 
pump wavelength of 790 nm and Stokes wavelengths 
in the range from 1015 nm to 1050 nm. For Stimulated 
Raman Histology (SRH) study, samples were sequentially 
scanned at two Raman shifts: 2850 cm-1 and 2950 cm-1. 
Lipid-rich brain regions (e.g., myelinated white matter) 
show high signal at 2845 cm-1 due to symmetric CH2 
stretching in fatty acids. Cellular regions show high 
intensity at 2930 cm-1 and high S2930/S2845 ratio, indicating 
high protein and DNA content. The resulting maps of 
the intensity ratios at these two peaks were converted 
to pseudocolor using the H&E coloring scheme. 
Convolutional neural networks (CNN) were used to 
classify the resulting images. This is a very promising 
method to use the entire array of currently accumulated 
H&E histologic slices as a training sample. 

In work [44], CARS microscopy was used to visualize 
fresh un�xed and unstained ex vivo specimens from 
a mouse model of orthotopic human astrocytoma. 
The histologic features shown on CARS images were 
comparable to standard H&E histology. Chemically 
selective images of lipids (2845 cm−1, symmetric CH2 
stretching) and proteins (CH3 stretching, 2920 cm−1; 

amide I band, 2960 cm−1) allowed the delineation of 
the brain tumor boundary in a mouse model. The 
authors [45] used molecular C-H vibrations in di�erent 
cryosectioned brain tumors (glioblastoma, melanoma, 
and breast cancer metastases) to assess lipid content 
compared to normal brain tissue, demonstrating that all 
tumor types have lower CARS lipid signal intensity than 
normal parenchyma.

Methodology for the application  
of machine learning in analyzing 
spectrally resolved images

Machine learning (ML) methods are used for 
spectrally resolved images at several levels. First, for 
image processing and segmentation, and second, for 
data classi�cation. The combination of these methods is 
usually combined by the term machine vision. However, 
in the case of spectrally resolved images, we have a 
hypercube of data, i.e. the dimensionality we operate 
on is higher than when analyzing conventional images. 
At the same time, the sampling volume, as is often the 
case in medical applications, is limited by the image 
registration procedure itself.

Typically, to develop e�ective clinical decisions, AI 
models are trained to reproduce expert performance 
on large amounts of well-annotated data, leading to 
reasonably accurate and reproducible results in medical 
image analysis. However, this approach is critically 
dependent on the availability of large annotated datasets. 
Strict regulatory restrictions on medical data sharing and 
the opportunity cost for physicians to annotate data 
make the generation of large datasets far from a trivial 
task [46] Several approaches have been used to increase 
the amount of available data, such as synthetic dataset 
generation [47] or arti�cial expansion of available 
annotated datasets [48]. More non-trivial approaches are 
also possible, as in the case of histology based on Raman 
spectroscopy, where two characteristic peaks for proteins 
and lipids allow the generation of a pseudo-color image 
that mimics histological tissue images when stained 
with hematoxylin-eosin, which immediately opens 
access to huge databases of pathomorphological data 
[49]. The method of laser confocal endomicroscopy with 

Рис. 5. Диа-
граммы Яблон-
ского, иллюстри-
рующие эффект 
комбинационного 
рассеяния и его 
отличие от упру-
гого рассеяния.
Fig. 5. Yablonsky 
diagrams 
illustrating the 
effect of Raman 
scattering and its 
difference from 
elastic scattering.

Savelieva T.A., Romanishkin I.D., Ospanov A., Linkov K.G., Goryajnov S.A., Pavlova G.V., Pronin I.N., Loschenov V.B.  
Machine learning methods for spectrally-resolved imaging analysis in neuro-oncology



47

R
E

V
IE

W
S

 O
F 

LI
TE

R
A

TU
R

E

BIOMEDICAL PHOTONICS    Т. 13, № 4/2024

�uorescein o�ers a similar expansion of the annotated 
data base.

The stage of preprocessing of recorded signals is 
critical for successful tissue classi�cation using spectrally 
resolved data, including images. In works devoted to 
hyperspectral imaging systems, a general algorithm 
can be identi�ed, including such stages as formation 
of the hypercube of data (regardless of the type of 
scanning used), background correction, correction on 
the white and dark reference images, spectral correction, 
normalization, and often a synthetic full-color image. 
When analyzing spectrally resolved images based on the 
Raman e�ect, the algorithm includes removal of “silent” 
regions in the spectrum (those that do not contain 
characteristic peaks), cosmic rays removal, baseline and 
�uorescence correction, normalization.

Hyperspectral imaging has shown remarkable 
results as a diagnostic tool for tumor detection in 
various medical applications. In [50], using a k-fold 
cross-validation approach, they demonstrated that 
HSI combined with the proposed processing system 
(Table 1) is a promising intraoperative tool for in-vivo 
identi�cation and delineation of brain tumors, including 
both primary (high and low malignancy) and secondary 
tumors. The obtained data were transformed into a 
set of spectral and spatial features with subsequent 
classi�cation using both classical machine learning and 
deep learning methods [51]. 

An important stage of work with spectral data is the 
choice of a dimensionality reduction method. Among 
the most commonly used methods are feature �ltering 
methods based either on a priori data on biochemical 
composition of tissues or on the results of statistical 
analysis and selection of those features that provide 
statistically signi�cant di�erences between classes 
of data. Another widely used approach is the use of 
feature projection methods, among which the principal 
component analysis (PCA) is the most popular. PCA is 
used to project a higher-dimensional data matrix onto a 
low-component subspace. It reduces the set of variables 
to a smaller set of orthogonal, and thus independent, 
principal components in the direction of maximum 
variation, i.e., it reduces the dimensionality and preserves 
the most signi�cant information for further analysis. 
Linear discriminant analysis (LDA) and, somewhat less 
frequently, quadratic discriminant analysis (QDA) are 
also frequently used for this purpose. The main goal of 
linear discriminant analysis (also called Fisher’s linear 
discriminant) is to �nd “axes of discrimination” that 
optimally classify data into two or more classes. LDA is 
closely related to PCA (Principal Component Analysis) in 
that both look for latent axes that compactly explain the 
variance in the data. The main di�erence between PCA 
and LDA is that LDA is a supervised method and PCA is 
an unsupervised method. PCA looks for predictions that 

maximize the variance, and LDA looks for predictions 
that maximize the ratio of interclass variance to intraclass 
variance. QDA is a classi�er with a quadratic decision 
boundary, generated by �tting class conditional densities 
to the data and using Bayes’ rule.

Another way to reduce the dimensionality of the 
data is the t-Distributed Stochastic Neighbor embedding 
(t-SNE) algorithm. It is a nonlinear dimensionality 
reduction method well suited for embedding high-
dimensional data for visualization into a low-dimensional 
space of two or three dimensions. In the higher dimension 
space, a probability distribution over pairs of points is 
constructed in such a way that similar points are assigned 
a high probability, and dissimilar points are assigned a 
lower probability. And in the lower dimension space, the 
algorithm tries to achieve similar probability distribution 
by minimizing Kullback–Leibler divergence between two 
distributions. t-SNE tries to preserve the relative positions 
of points in lower dimensional mapping.

To deal with high-dimensional hyperspectral data, 
a dimensionality reduction method with manifold 
embedding can also be used. This method uses a 
modi�ed version of t-SNE based on deep learning, called 
t-SNE with �xed references (FR-t-SNE). This nonlinear 
embedding method seeks to preserve local spatial 
regularity (nearby pixels have a high probability of 
representing the same class) while preserving high-level 
global features (pixel classes) [52].

Both classical machine learning methods such as 
support vector machine (SVM) method, linear and 
quadratic discriminant analysis, ensembles of random 
forest (RF) based algorithms, and methods based on neural 
networks are used to classify tissues according to the 

Рис. 6. Блок-схема основных этапов анализа спектрально-
разрешенных изображений.
Fig. 6. Flowchart of the key steps involved in the analysis of 
spectrally-resolved images.
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obtained features (Table 1). SVM method is a supervised 
machine learning algorithm that predicts an optimal 
hyperplane in n-dimensional space to divide the training 
set into several classes. Depending on the problem, 
di�erent kernel functions can be de�ned for the decision 
function to add another dimensionality to the data, 
allowing better partitioning into classes. The algorithm 
proposed in the study [53] used a hybrid approach 
that combined both supervised and unsupervised 
machine learning methods. First, supervised pixel 
classi�cation using SVM was performed. The generated 
classi�cation map was spatially homogenized using the 
t-SNE dimensionality reduction algorithm and K-nearest 
neighbor (KNN) �ltering. The information obtained from 

the supervised stage was merged with the segmentation 
map obtained by clustering. The merging was performed 
using a majority voting approach that associates each 
cluster with a particular class.

A combined approach was also used in [54]. The 
KNN-based �ltering algorithm receives an input image 
that consists of probability maps estimated by the SVM 
classi�er and a hypercube representation at one of the 
wavelengths generated using a dimensionality reduction 
algorithm such as PCA. The result is a classi�cation map 
where each pixel is assigned to the most likely class. The 
nearest neighbors of a particular pixel are searched in 
the feature space, which contains both the pixel value 
and spatial coordinates.

Таблица 1. 
Методология, используемая при классификации спектрально-разрешенных изображений,  
регистрируемых в условиях in vivo
Table 1.
Methodology used in the classification of spectrally resolved images recorded in vivo

Источник
Source

Тип сигнала 
Signal type

Снижение размерности 
Dimensionality reduction

Методы МО 
ML methods

Ayaz 2022 [57] ГСВ (ЛС) 
HSI (push-broom)

Автокорреляции и инкрементальный МГК 
The autocorrelation and incremental PCA

3D CNN

Baig 2021 [58] ГСВ (ЛС) 
HSI (push-broom)

Эмпирическая модовая декомпозиция, выбор признаков 
EMD (Empirical Mode Decomposition), feature selection

SVM

Cruz-Guerrero, 2020 
[59]

ГСВ (ЛС) 
HSI (push-broom)

Расширенное слепое извлечение конечных элементов  
и распространенности 

Extended blind end-member and abundance extraction 
(EBEAE)

Слепое линейное 
разложение
Blind linear 

unmixing, SVM
Ezhov, 2023 [35] ГСВ (ЛС) 

HSI (push-broom)
МГК
PCA

Fabelo, 2016 [33] ГСВ (ЛС) 
HSI (push-broom)

SVM, CNN, RF

Fabelo, 2018 [53] ГСВ (ЛС) 
HSI (push-broom)

t-SNE SVM, KNN

Fabelo, 2019 [51] ГСВ (ЛС) 
HSI (push-broom)

Эмпирический выбор трёх спектральных каналов
Empirical choice of three spectral channels

2D-CNN, DNN

Florimbi, 2018 [54] ГСВ (ЛС) 
HSI (push-broom)

PCA SVM, KNN

Leon, 2023 [50] ГСВ 
HSI

PCA SVM, RF, KNN, DNN

Ravi, 2017 [52] ГСВ (снимок) 
HSI (Snapshot)

Вложение многообразий 
Manifold embedding

STF

Ruiz, 2020 [60] ГСВ (снимок) 
HSI (Snapshot)

SVM, RF

Salvador, 2016 [61] ГСВ (ЛС) 
HSI (push-broom)

SVM, RF, CNN, KKN

Sutradhar, 2022 [62] ГСВ (снимок) 
HSI (Snapshot)

SVM

Torti, 2018 [63] ГСВ (ЛС) 
HSI (push-broom)

PCA SVM, KNN

Urbanos, 2021 [64] ГСВ (снимок) 
HSI (Snapshot)

SVM, RF и CNN

*ГСВ – гиперспектральная визуализация, ЛС – линейное сканирование, МГК – метод главных компонент, ЛДА – линейный 
дискриминантный анализ, КДА – квадратичный дискриминантный анализ, SVM – метод опорных векторов, RF – случайный лес, KNN – 
метод k ближайших соседей, CNN – конволюционная нейросеть, DNN – глубокая нейросеть, STF – семантический текстовый лес
*HSI – Hyperspectral Imaging, PCA – Principal Component Analysis, LDA – linear discrimimnant analysis, QDA – Quadratic Discriminant Analysis, 
SVM – Support Vector Machine, RF – Random Forest, KNN – k Nearest Neighbors, CNN – Convolutional Neural Network, DNN – Deep Neural 
Network, STF – Semantic Texton Forest
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Таблица 2. 
Методология, используемая при классификации спектрально-разрешенных изображений, регистрируемых  
в условиях ex vivo
Table 2.
Methodology used in the classification of spectrally resolved images recorded ex vivo

Источник 
Source

Подготовка 
материала 

Sample 
Preparation

Тип сигнала 
Signal type

Снижение 
размерности 

Dimensionality 
reduction

Методы МО 
ML methods

Fürtjes 2023 [66] ex vivo SRH, двухфотонная 
флуоресценция 
SRH, two-photon 

�uorescence

CNN

Hollon, 2021 [43] ex vivo SRH Inception-ResNet-v2 DNN

Hollon, 2023 [42] ex vivo Stimulated Raman 
histology (SRH)

ResNet-50 DNN 

Kast, 2015 [41] ex vivo Raman microscopy 
(785 nm)

(1004 см−1), 
(1300–1344 см−1), 

(1600 см−1)

Многочленная 
логистическая модель 

A multinomial logistic model
Lita, 2024 [70] FFPE Raman microscopy 

(532 nm)
МГК, tSNE
PCA, tSNE

KNN, DBSCAN, SVM, RF

Morais, 2019 [71] FFPE Raman 
microspectroscopy 
imaging (785 nm)

МГК, АПП, ГА
PCA, SPA, GA

LDA, QDA, SVM

Orringer, 2017 [49] Замороженные 
срезы 

Frozen sections

Stimulated Raman 
scattering (SRS) 

microscopy

Многослойный персептрон 
(MLP)

Multilayer perceptron (MLP)
Uckermann, 2020 
[69]

Замороженные 
срезы, свежий 
биопсийный 

материал 
Cryosections, ex vivo 

fresh biopsies

CARS, TPEF LDA

*FFPE – фиксированные формалином и залитые парафином препараты тканей, SRH – гистология на основе вынужденного 
комбинационного рассеяния, МГК – метод главных компонент, АПП – алгоритм последовательных проекций, ГА – генетический 
алгоритм, CNN – конволюционная нейросеть, DNN – глубокая нейросеть.
*FFPE – Formalin-�xed, para�n-embedded tissue slides, SRH – Stimulated Raman histology, PCA – Principal Component Analysis, SPA – Succes-
sive projections algorithm, CNN – convolutional neural network, DNN – deep neural network.

A random forest (RF) is an ensemble-based machine 
learning algorithm with a teacher that uses decision 
trees as a base. For classi�cation tasks, the output of a 
random forest is the class selected by the majority of 
trees. For regression tasks, the output is the average of 
the predictions of the trees. Studies on the use of RF [55, 
56] have proved that it is a successful classi�er when 
hyperspectral images are used.

Convolutional neural networks (CNNs) have an 
advantage over classical machine learning methods 
in that they actually implement both stages: feature 
extraction and classi�cation. In the feature extraction 
block, convolutions are performed to detect patterns 
in spatial and spectral dimensions, resulting in a 3D 
convolutional neural network (3D CNN) [57]. This feature 
extraction stage yields a reduced feature vector as output, 
which serves as input for the classi�cation stage, where 
a number of fully connected layers display a feature to 
partition the data into desired classes. The parameters 
of convolutional and fully connected layers are trained 
in a supervised manner. Deep learning can be applied to 

tumor identi�cation in both deep fully-connected pixel-
by-pixel and convolutional spatial-spectral con�gurations 
[65]. The 3D CNN model proposed in [57] consists of only 
two 3D layers and utilizes a limited number of training 
samples (20%), which are further divided into 50% for 
training and 50% for validation, and tested blindly (80%) 
on the remaining data. This study outperformed the 
state-of-the-art hybrid architecture, achieving an overall 
accuracy of 99.99%. In [51], both a classi�er based on a 
two-dimensional convolutional neural network (2D-CNN) 
of three convolutional layers, one averaging pooling layer 
and one fully connected layer, and a deep neural network 
(DNN) (implemented in TensorFlow on NVIDIA Quadro 
K2200 GPU and trained using only spectral features of the 
samples) were used. Three spectral channels (λ42=591.10 
nm, λ50=620.21 nm, and λ80=729.34 nm) were selected 
from the hypercube to highlight blood vessels in the image, 
the resulting images were classi�ed using 2D-CNN. The 
map of parenchymatous regions was also obtained using 
2D-CNN. The hypercube was fed to the 1D-DNN input, 
classifying the tissues in the image into four classes: normal 
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tissue, tumor tissue, blood vessels/hypervascularized 
tissue, and background. The blood vessel map was then 
merged with the 1D-DNN classi�cation map by �lling in 
the positive mask, and this result was merged with the 
parenchyma map using negative mask �lling. 

Very promising results can be obtained by combining 
di�erent approaches. Moving from the works devoted to 
spectrally resolved imaging in vivo to ex vivo approaches, 
it is necessary to consider several used optical-spectral 
modalities at once. In [66], brain auto�uorescence and 
neoplasia were evaluated at the microscopic level using 
stimulated Raman histology (SRH) combined with two-
photon �uorescence. By combining two di�erent optical 
e�ects, Raman scattering and auto�uorescence with 
two-photon excitation, virtual images similar in structure 
to classical histological images obtained by hematoxylin-
eosin staining with corresponding �uorescence images 
were obtained. Based on a previously developed 
convolutional neural network (CNN) based model [67], 
tumor, non-tumor and low quality SRH images were 
di�erentiated, and a heat map was created as an overlay 
on the SRH image. Using the CNN heat map, regions 
of interest (ROIs) were created and overlaid on the 
corresponding auto�uorescence image to determine 
the average �uorescence intensity in the corresponding 
ROI. Another important technique for visualizing 
biological tissues is microscopy based on the principle 
of multiphoton �uorescence. The main advantage of this 
method of molecular imaging is high spatial resolution 
in combination with greater depth of penetration into 
the tissue, and this method shows good results even 
without the introduction of additional dyes, based 
on auto�uorescence analysis [68]. Interesting results 
were obtained by the authors [69] using a combination 
of techniques such as CARS, two-photon-excited 
�uorescence (TPEF) and second harmonic generation 
on brain tumor cryosections of 382 patients and 28 
healthy brain tissue samples. The texture parameters of 
these images were calculated and used as input for linear 
discriminant analysis. The combined analysis of CARS and 
TPEF signal texture parameters proved to be the most 
suitable for distinguishing between non-tumor brain 
tissues and brain tumors (astrocytomas of low and high 
malignancy, oligodendroglioma, glioblastoma, recurrent 
glioblastoma, and metastases) with a sensitivity of 96%, 

speci�city of 100%. To approximate the clinical results, 
the results were validated on 42 fresh un�xed tumor 
biopsies: 82% of tumors and all non-tumor specimens 
were correctly identi�ed. An image resolution of 1 μm 
was su�cient to distinguish between brain tumors and 
non-tumor brain.

The use of forced Raman microscopy with the 
construction of a distribution map of the ratio of 
protein and lipid peaks makes it possible to construct 
a pseudo-hematoxylin-eosin image, i.e., to use the 
entire accumulated histological material to classify 
the corresponding samples, which was brilliantly 
demonstrated in [42, 43].

Conclusion
Optical spectroscopy methods, due to the possibility of 

non-damaging interaction of light with biological tissues 
and wide possibilities of analyzing the content of various 
molecules, markers, and their structural features, are 
increasingly used in neurosurgery of intracranial tumors 
to solve the problems of intraoperative demarcation of 
tumor and healthy tissues. Another trend is the use of 
optical-spectral methods as urgent biopsy techniques. 
Clinical specialists are already accustomed to working 
with medical images, which causes their growing interest 
in the expansion of optical-spectral methods into the 
�eld of analyzing spectrally resolved images. However, 
the interpretation of such images requires a complex 
mathematical apparatus including both methods of 
preprocessing of data obtained in spatial and spectral 
coordinates, and methods of classi�cation of objects 
and tissues in these images in order to determine the 
boundaries of tumor tissues during surgery, or their 
classi�cation during microscopic examination. This review 
considers such spectrally resolved image registration 
methods as video �uorescence intraoperative navigation 
including endomicroscopy, hyperspectral intraoperative 
imaging in di�use-re�ected light, Raman microscopy 
methods. Basic machine learning methods used for tissue 
classi�cation in neuro-oncology based on the analysis of 
such images are also presented.
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