EXPERIMENTAL IN VIVO STUDIES OF THE ANTITUMOR EFFICACY OF PHOTODYNAMIC AND RADIODYNAMIC THERAPY AND THEIR COMBINATIONS

Tzerkovsky D.A.¹, Kozlovsky D.A.¹, Mazurenko A.N.¹, Adamenko N.D.², Borichevsky F.F.³
¹N.N. Alexandrov National Cancer Center of Belarus, Lesnoy, Republic of Belarus
²Vitebsk State University named after P.M. Masherov, Vitebsk, Republic of Belarus
³Minsk Regional Clinical Hospital, Lesnoy, Republic of Belarus

Abstract
The authors studied the antitumor efficacy of photodynamic therapy (PDT) in combination with radiodynamic therapy (RDT) in an in vivo experiment. The study was approved by the Ethics Committee of the N.N. Alexandrov National Cancer Center of Belarus (protocol dated February 25, 2022, № 180). The work was performed on 26 white non-linear rats weighing 200 ± 50 g. Pliss lymphosarcoma (PLS) was used as a tumor model, which was transplanted subcutaneously. Photosensitizer (PS) «Photolon» (RUE «Belmedpreparaty», Belarus) was administered intravenously at a dose of 2.5 mg/kg of body weight. The RDT session was performed by the contact method (CRT) once 2.5–3 times after the end of the infusion of the PS on the «microSelectron-HDR V3 Digital apparatus» (Elekta, Sweden) using γ-radiation (192Ir) in a single focal dose 6 Gy. A PDT session was performed once immediately after exposure to ionizing radiation using a «PDT diode laser» (LTD Imaf Axicon, Belarus, λ=660±5 nm) at an exposure dose of 100 J/cm² with a power density of 0.2 W/cm² and a power of 0.353 watts. All rats were divided into 4 groups of 6–7 animals each: intact control (IC), PS + PDT, PS + CRT, PS + CRT + PDT. The criteria for evaluating antitumor efficacy were: the average volume of tumors (Vav, cm³), the coefficient of absolute growth of tumors (K, in RU), the coefficient of tumor growth inhibition (TGI, %), the frequency of complete tumor regressions (CR, %), the proportion of cured rats (%), an increase in the average duration of dead rats (%). Differences were considered statistically significant at p<0.05. On the 18th day of the experiment, Vav in groups was 63.25±2.76 cm³; 29.03±6.06 cm³ (p=0.0002); 22.18±5.94 cm³ (р<0.0001); 11.76±3.29 cm³ (p=0.0000), respectively. Coefficients K – 4516.86 RU; 2638.09 RU; 2024.45 RU; 979.00 RU. TGI coefficients – 54.10% (PS + PDT); 64.93% (PS + CRT); 81.41% (PS + CRT + PDT). An increase in the average duration of dead rats indicator – 48.57% (PS + PDT); 60.00% (PS + CRT); 97.71% (PS + CRT + PDT). On the 60th and 90th days of the experiment, the frequency of PR and the proportion of cured rats were the same and amounted to 0%; 16.7%; 14.3%, and 28.6%, respectively. The results obtained indicate the prospects and relevance of further research in this scientific direction.

Key words: experimental research, rats, transplanted tumors, photodynamic therapy, radiodynamic therapy, photosensitizer.

Contacts: Tzerkovsky D.A., e-mail: tzerkovsky@mail.ru

Резюме
В рамках пилотного исследования авторами изучена противоопухолевая эффективность фотодинамической терапии (ФДТ) в комбинации с радиодинамической терапией (РДТ) в эксперименте in vivo на подкожно перевитой опухолевой модели лимфосаркомы Плисса.

Д.А. Церковский¹, Д.И. Козловский¹, А.Н. Мазуренко¹, Н.Д. Адаменко², Ф.Ф. Боричевский²
¹Республиканский научно-практический центр онкологии и медицинской радиологии им. Н.Н. Александрова, г. Лесной, Республика Беларусь
²Витебский государственный университет им. П.М. Машерова, г. Витебск, Республика Беларусь
³Минская областная клиническая больница, г. Лесной, Республика Беларусь
Introduction

Photodynamic therapy (PDT) is a method for the treatment of precancerous diseases and malignant neoplasms, the effectiveness of which has been proven and confirmed by the results of numerous preclinical studies on cell cultures and laboratory animals with transplanted tumors, as well as clinical studies, i.a. multicenter randomized studies including a significant number of patients with various nosological forms of oncological pathology [1, 2]. PDT is based on the use of special drugs – photosensitizers (PS), the activation of which in pathologically altered tissues is realized by exposure to laser radiation with a certain wavelength [3, 4, 5]. However, in recent years, scientific projects have actively explored reactions that occur when high doses of these physical factors are used, primarily, of RT.

Materials and methods

Laboratory animals

The pilot study was performed on 26 white nonlinear outbred male rats obtained from the vivarium of N. N. Alexandrov National Cancer Centre of Belarus, with a body weight of 200±50 g, aged 2.5-3 months. The duration of quarantine before inclusion in the experiment was 14 days. The rats were kept under standard conditions of food and drink rations ad libitum, with 12-hour illumination, at a temperature of 20–22°C and a humidity of 50–60% in individual cages, 6–7 individuals in each. The conditions for keeping rats in the laboratory, as well as indicators of humidity, temperature, and illumination in the room, corresponded to the current sanitary rules for the arrangement, equipment, and maintenance of vivariums (Sanitary rules and regulations 2.1.2.12-18-2006 "Arrangement, equipment and maintenance of experimental biological clinics (vivariums)", Decree of the Chief State Sanitary Doctor of the Republic of Belarus, dated October 31, 2006 No. 131) and Interstate standards: State Standard 33216-2014 ("Guidelines for keeping and caring for laboratory animals. Rules for keeping and caring for laboratory rodents and rabbits") and State Standard 33215-2014 "Guidelines for the maintenance and care of laboratory animals. Rules for the equipment of premises and organization of procedures", approved by the Resolution of the Interstate Council for Standardization, Metrology and Certification, a protocol of December 22, 2014, No. 73-P).
Tumor strain

Pliss lymphosarcoma (PLS) obtained as a cell culture (Russian Collection of Cell Cultures, Institute of Cytology RAS, St. Petersburg, Russian Federation) was used as a tumor strain.

Tumor model

PLS cell culture was inoculated subcutaneously in rats and maintained by passivation *in vivo*. Subcutaneous inoculation of the experimental study included the introduction under the skin of the left inguinal region of 0.5 ml of a suspension of tumor cells in 20% Hanks solution, obtained after taking and homogenizing tumor pieces from a donor rat. PLS is one of the rapidly growing tumors with a short latent period. In this regard, rats with PLS were included in the experiment on the 6th day after transplantation, when the diameter of the tumor node, on average, was 3–5 mm.

Ethical aspects

Experimental studies were carried out in accordance with international legislation and the regulatory legal acts in force in the Republic of Belarus for conducting experimental studies with laboratory animals, namely:

1. European Convention for the Protection of Ver tebrate Animals used for Experimental or Other Scientific Purposes (Strasbourg, France, of 18.03.1986), as amended in accordance with the provisions of the Protocol (ETS No. 170 of 02.12.2005).

The nature of the studies performed was consistent with the principles of “3Rs” developed by W.M. Russell and R.L. Berch (1959), namely:

1) “Reduction” – reduction in the number of laboratory animals used in the experiment.
2) “Refinement” – improvement of the methodology of the experiment through the use of painkillers and non-traumatic methods.
3) “Replacement” – replacement (transition from animal research to methods that do not use living beings).

Before irradiation, rats were anesthetized (neuroleptanalgesia: 0.005% fentanyl solution + 0.25% droperidol solution, in a ratio of 2:1, 0.2 ml per 100 g of body weight, intramuscularly). After the end of the observation period, the rats were sacrificed using generally accepted methods of euthanasia (*aether pro nar cosi*) in compliance with the humane methods of handling laboratory animals.

The study was approved by the Ethics Committee of N. N. Alexandrov National Cancer Centre of Belarus (extract from the protocol dated February 25, 2022 No. 180).

Photo- and radiosensitizer

As a drug, an injectable form of PS based on chlorin e6 photolon (RUE "Belmedpreparaty", Minsk, Republic of Belarus, registration number 16/11/886 dated November 08, 2016, 100 mg) was used. Before use, PS powder was diluted with 0.9 % sodium chloride solution and administered once by intravenous infusion into the tail vein of a rat in a darkened room at a dose of 2.5 mg/kg.

Radiodynamic therapy

The irradiation of inoculated tumors was carried out by the contact method (contact radiation therapy, CRT) using a microSelectron-HDR V3 Digital apparatus (Elekta, Sweden) using γ-radiation (137Cs). The source had a high activity (at the beginning of the experiments it was 5.2 Ci), which determined the high dose rate and short duration of irradiation sessions required for rats in a state of drug sleep. To conduct CRT on the area of the inoculated tumor, a Leipzig applicator was used, which was fixed on the surface of the tumor with soft rubber holders. Irradia tion was performed once at a single focal dose (SFD) of 6 Gy, which is equivalent to 10.8 Gy at α/β = 3, 2.5–3 hours after the end of the infusion. The time of the irradiation session was calculated using the Oncentra Brachy v4.5.2 planning system (Elekta, Sweden) on an empty series of images using the TG-43 algorithm without taking into account the reflection and scattering of radiation inside the applicator. The CRT technique was used with normalization to a point located at a distance of 5 mm from the therapeutic surface of the applicator, in accordance with the size of the target and the recommendations of GEC-ESTRO ACROP and others. The used method of irradiation made it possible to apply the planned SFD to transplanted tumors in rats without over-irradiation of normal tissues surrounding the tumor.

Photodynamic therapy

PDT sessions were performed once right after exposure to ionizing radiation (IRT) using a PDT diode laser (LTD Imaf Axicon, Minsk, Republic of Belarus) with a wavelength of 660 ± 5 nm. Irradiation of grafted tumors was started 2.5–3 hours after the end of PS infusion with a light dose of 100 J/cm² with a power density of 0.2 W/cm² and a power of 0.353 W. The duration of exposure was 8 minutes.

Study design

All exposures were performed on the 6th day after PLS inoculation when the diameter of the tumor node was at least 3–5 mm. All rats, 26 individuals (males), included in the study, were randomly distributed into 4 groups of 6–7 individuals in each. Rats with transplanted...
tumors, which were not injected with PS and did not undergo any irradiation, acted as controls (intact control, IC) (Table 1).

Criteria for evaluating antitumor efficacy

The antitumor efficacy of the interventions was assessed according to the indicators generally accepted in experimental oncology, which characterize the dynamics of changes in the average tumor volume (V_{av}, cm3), as well as the change in the coefficient of absolute tumor growth (K) and the index of tumor growth inhibition (TGI, %). The growth dynamics of transplanted tumors was recorded starting from the 6th day after transplantation of the PLS tumor strain for 2 weeks with an interval of 2–3 days.

Tumor volume was calculated using the following formula (1):

$$V = \frac{1}{6} \pi \times d_1 \times d_2 \times d_3$$

where
- $d_{1,2,3}$ – three mutually perpendicular tumor diameters (in cm);
- $\pi/6 = 0.52$ – a constant value;
- V – the volume of the tumor (in cm3).

The coefficient of absolute tumor growth (K) was calculated by the following formula (2):

$$K = \frac{V_t - V_0}{V_0}$$

where
- V_0 – the initial volume of the tumor (before exposure);
- V_t – the tumor volume for a certain period of observation.

The value of the index $K > 0$ (V at the corresponding period of observation exceeded its initial value) was regarded as continued tumor growth; $-1 < K < 0$ (V at the corresponding observation period was less than its initial value) was regarded as inhibition of tumor growth; and $K = -1$ – as complete tumor regression.

The coefficient of tumor growth inhibition (TGI) was calculated by the following formula (3):

$$TGI\% = \frac{V_{control} - V_{experience}}{V_{control}} \times 100\%$$

where
- $V_{control}$ – the average volume of the tumor in the control group (in cm3);
- $V_{experience}$ – the average volume of the tumor in the main group (in cm3).

The minimally significant criterion demonstrating the effectiveness of the treatment of transplanted tumors was considered TGI > 50%.

The frequency of complete tumor regressions (CR) was assessed 60 days after the end of exposure by the absence of visual and palpatory signs of tumor growth.

The proportion of cured rats in the groups was determined 90 days after the end of exposure by the absence of visual and palpatory signs of tumor growth.

Quantitative criteria for assessing the inhibitory effect on grafted tumors in rats were as follows (Table 2) [11]:

The evaluation of the antitumor effect by increasing the lifespan was carried out at the end of the experiment and the death of all rats. The average life expectancy (ALE, days) in the groups was determined and the indicators of life expectancy increase (LEI, %) were calculated using the formula (4):

$$LEI\% = \frac{ALE_{experiment} - ALE_{control}}{ALE_{control}} \times 100\%$$

where
- LEI – an indicator of the increase in the life expectancy of dead rats (in %);
- $ALE_{experiment}$ – the average life expectancy of dead rats in the experimental groups (per day);
- $ALE_{control}$ – the average life expectancy of dead rats in the control group (per day).

Statistical processing of the obtained data

Statistical processing of the results (V_{av}, K, and TGI) was performed using Excel, Origin Pro (version 7.0), and

Table 1

<table>
<thead>
<tr>
<th>Study groups</th>
<th>Number of rats in the group, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact control</td>
<td>6</td>
</tr>
<tr>
<td>PS 2.5 mg/kg + CRT SFD 6 Gy</td>
<td>7</td>
</tr>
<tr>
<td>PS 2.5 mg/kg + PDT 100 J/cm2 0.2 W/cm2</td>
<td>6</td>
</tr>
<tr>
<td>PS 2.5 mg/kg + CRT SFD 6 Gy + PDT 100 J/cm2 0.2 W/cm2</td>
<td>7</td>
</tr>
</tbody>
</table>

* ФС – фотосенсибилизатор; КЛТ – контактная лучевая терапия; РОД – разовая очаговая доза; ФДТ – фотодинамическая терапия.

* PS – photosensitizer; CRT – contact radiotherapy; SFD – single focal dose; PDT – photodynamic therapy.
Results

The inoculation of the tumor strain was 100% (26 out of 26 rats had visual and palpatory signs of tumor growth at the time of the start of therapeutic interventions, on the 6th day after inoculation).

Adverse reactions and complications associated with intravenous administration of PS, as well as PDT and CRT sessions, were not registered.

In the experiment, the antitumor efficacy of the method of combined therapy of transplantable tumors was evaluated, including systemic (intravenous) administration of a PS based on chlorin e6, followed by a single exposure to ionizing radiation in the SFD of 6 Gy and laser radiation with a light dose of 100 J/cm² with a power density of 0.2 W/cm² in comparison with each of the components of the method (PS + CRT, PS + PDT) and IC.

As can be seen from Table 3, during the entire period of evaluation of indicators characterizing the change in the growth dynamics of transplanted tumors (from 6 to 18 days after therapeutic exposure), its statistically significant inhibition was noted both in the combination therapy group and in the groups of rats that were treated in monomodes (PS + PDT and PS + CRT), compared with the IC group (p<0.05).

On the 18th day of the experiment, Vav. in the combination therapy group was statistically significantly less: 5.38 times compared with IC (p=0.00001), 2.47 times compared with PS + PDT (p=0.025), and tended to decrease compared with the PS + CRT group (1.89 times; p=0.15).

Table 5 presents data on the survival rates of dead rats in this series of experiments. The results obtained testify to the high antitumor efficacy of the developed method of combined therapy: a statistically significant LEI was achieved in comparison with IC and a tendency to optimize the studied parameters was noted in comparison with each of the components of the method (p=0.12 – PS + PDT and p=0.24 – PS + CRT).

Thus, the developed method of combined therapy, which includes intravenous administration of a PS based on chlorin e6 at a dose of 2.5 mg/kg of body weight, followed, after 2.5–3 hours, by a single session of CRT in the SFD of 6 Gy and PDT with a light dose of 100 J/cm² with a power density of 0.2 W/cm² demonstrated high antitumor efficacy. On the 18th day after the session of treatment of animals, the coefficient K was 979.00 RU; the value of TGI, compared with the IC was 81.41%. On the 60th and 90th days, the CR and cure rates were 28.6% and 28.6%, respectively. ALE and LEI indicators were 34.60±3.75 days and 97.71%, respectively. The effectiveness of the impact on a semi-quantitative scale of assessment was “+++”.

Discussion

As already mentioned, in recent years, the possibility of using such physical factors as ultrasound, hyperthermia, electric fields, etc., as trigger mechanisms for the activation of the PS molecule in pathologically altered cells and tissues has been actively studied [6, 7, 8]. One of the most relevant areas of scientific research in experimental and clinical oncology is radiodynamic therapy (RDT) – a method of treating malignant neoplasms based on the combined use of PS and their derivatives and ionizing radiation with certain param-
eters. PS traditionally used for PDT may have radiosensitizing properties, and in this case, they can be considered as radiosensitizing agents that increase the antitumor efficacy of RT. It is well known that tumor physiology is characterized by low oxygen tension (hypoxia, anoxia), low glucose and high lactate levels, interstitial hypertension, and extracellular acidosis. The vascular network of the tumor is characterized by the pronounced proliferation of endotheliocytes, which leads to the development of structural defects and functional failure of microcapillaries, as a result of which the intratumoral blood flow becomes chaotic with the presence of areas of insufficient vascularization. Hypoxic tumor cells have an increased resistance to ionizing radiation.

Таблица 3

<table>
<thead>
<tr>
<th>Наименование группы (Groups)</th>
<th>Сутки после перевивки (Days after tumors transplantation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ИК</td>
<td>0,014±0,001</td>
</tr>
<tr>
<td>IC</td>
<td>–</td>
</tr>
<tr>
<td>PS + CRT</td>
<td>–</td>
</tr>
<tr>
<td>PS + PDT</td>
<td>0,011±0,002</td>
</tr>
<tr>
<td>PS + CRT + PDT</td>
<td>–</td>
</tr>
<tr>
<td>PS + CRT + PDT</td>
<td>–</td>
</tr>
<tr>
<td>PS + PDT</td>
<td>–</td>
</tr>
<tr>
<td>PS + CRT + PDT</td>
<td>–</td>
</tr>
<tr>
<td>ФС + КЛТ + ФДТ</td>
<td>0,011±0,002</td>
</tr>
<tr>
<td>PS + CRT + PDT</td>
<td>–</td>
</tr>
<tr>
<td>PS + PDT</td>
<td>–</td>
</tr>
<tr>
<td>PS + CRT + PDT</td>
<td>–</td>
</tr>
<tr>
<td>PS + CRT + PDT</td>
<td>–</td>
</tr>
</tbody>
</table>

ФС – фотосенсибилизатор; *КЛТ* – контактная лучевая терапия; *ИК* – интактный контроль; *ФДТ* – фотодинамическая терапия.

PS – photosensitizer; CRT – contact radiotherapy; IC – intact control; PDT – photodynamic therapy.
and require the use of high doses of radiation, leveling this effect, which, as a result, can lead to the development of radiation reactions and damage to normal tissues surrounding the tumor. The key to preventing this situation is the use of radiosensitizers that modify the antitumor efficacy of RT (in particular, PS) or a combination of RT with other therapeutic options (for example, PDT) using reduced doses of radiation [8, 9, 10, 12].

When interpreting the main mechanisms underlying tumor cell damage with the combined use of PS and ionizing radiation, the authors conclude that the key link in the realization of the antitumor effect of RDT is free radical oxidation, which develops as a result of exposure to radiation on the water in the cell with subsequent transfer of PS molecules from the ground state to the excited state and the formation of a significant amount of free radi-

Таблица 4
Критерии оценки противоопухолевой эффективности по коэффициенту торможения роста опухоли и частоте полных регрессий

<table>
<thead>
<tr>
<th>Наименование группы</th>
<th>Показатель торможения роста опухоли (ТРО, %)</th>
<th>Частота полных регрессий, %</th>
<th>Эффективность</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИК (IC)</td>
<td>–</td>
<td>0,0</td>
<td>0</td>
</tr>
<tr>
<td>ФС + ФДТ (PS + PDT)</td>
<td>54,10</td>
<td>16,7</td>
<td>+++</td>
</tr>
<tr>
<td>ФС + КЛТ (PS + CRT)</td>
<td>64,93</td>
<td>14,3</td>
<td>+++</td>
</tr>
<tr>
<td>ФС + КЛТ + ФДТ (PS + CRT + PDT)</td>
<td>81,41</td>
<td>28,6</td>
<td>++++</td>
</tr>
</tbody>
</table>

* ФС – фотосенсибилизатор; КЛТ – контактная лучевая терапия; ИК – интактный контроль; ФДТ – фотодинамическая терапия.
* PS – photosensitizer; CRT – contact radiotherapy; IC – intact control; PDT – photodynamic therapy.

Таблица 5
Показатели выживаемости крыс после комбинированного лечения

<table>
<thead>
<tr>
<th>Наименование группы</th>
<th>Средняя продолжительность жизни, сут</th>
<th>Увеличение средней продолжительности жизни, %</th>
<th>p относительно ИК</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИК (IC)</td>
<td>17,50±2,16</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ФС + ФДТ (PS + PDT)</td>
<td>26,00±3,48</td>
<td>48,57</td>
<td>0,058</td>
</tr>
<tr>
<td>ФС + КЛТ (PS + CRT)</td>
<td>28,00±3,86</td>
<td>60,00</td>
<td>0,034</td>
</tr>
<tr>
<td>ФС + КЛТ + ФДТ (PS + CRT + PDT)</td>
<td>34,60±3,75</td>
<td>97,71</td>
<td>0,0017</td>
</tr>
</tbody>
</table>

* ФС – фотосенсибилизатор; КЛТ – контактная лучевая терапия; ИК – интактный контроль; ФДТ – фотодинамическая терапия.
* PS – photosensitizer; CRT – contact radiotherapy; IC – intact control; PDT – photodynamic therapy.
cals (reactive oxygen species – ROS) [13, 14]. Absorbing radiation, the PS molecule enters into a cascade of reactions, which leads to the formation of a hydroxyl radical, superoxide anion, and singlet oxygen in the cell, which are also accumulated due to the radiation radiolysis of water. Later, lethal damage to cellular components (cytoplasmic membranes, granular endoplasmic reticulum, mitochondria, DNA, etc.) occurs at the level of physicochemical processes. Possessing a high oxidative potential, ROS interact with membrane lipids of tumor cell organelles with the formation of oxidation products, destabilization, and subsequent destruction of the cell as a whole. The consequence of the above reactions to the combined effect is an oxidative stress syndrome that induces apoptosis [15].

In the available literature, there are few publications devoted to the study of the radiodynamic activity of PS based on protoporphyrin IX, hematoporphyrin and its derivatives in experiments in vitro/in vivo (gliomas c6 and U-373 MG, gliosarcoma 9L; squamous cell carcinoma of the human esophagus OE-21, adenocarcinoma human esophagus OE-33, human bladder carcinoma RT4, and colon adenocarcinoma HT-29) [13, 14, 16, 17, 18]. The authors report a statistically significant reduction in the number of viable tumor cells and inhibition of the growth of grafted tumors in the combination therapy groups compared with RT alone.

Thus, American researchers (Panetta J.V. et al.) from the Fox Chase Cancer Center (USA) presented the results of the use of RDT with protoporphyrin IX in mice with an orthotopic model of human prostate carcinoma PC-3. 5-aminolevulinic acid (5-ALA), which causes the formation of endogenous PS protoporphyrin IX, was administered orally at a dose of 100 mg/kg 4 hours before the start of irradiation of subcutaneously transplanted tumors, which was carried out once at a dose of 4 Gy. The authors reported that after 7 and 14 days from the start of therapeutic interventions in the RDT group, the average tumor volume was 24±9% and 21±8% less compared to the RT group in monomode, respectively (p<0.05) [19].

In their later study, D.M. Yang et al. (Fox Chase Cancer Center, USA) proved the presence of radiosensitizing properties in protoporphyrin IX in an experiment on immunodeficient RAGγ2C−/− mice with an orthotopic model of human glioblastoma P3. 5-ALA was used as a photosensitizing agent and was administered intraperitoneally at a dose of 100 mg/kg. Irradiation of transplanted tumors was carried out 3 times a week in the following modes: 3×2 Gy, 5×2 Gy, and 5×3 Gy; 2.55 Gy/min. Based on the analysis of the obtained results according to the criterion of survival, the optimal effect was fractionated irradiation in the mode of 5 × 3 Gy 3 times a week (73–83 days) vs. control (without exposure) (15–24 days), RT 3×2 Gy (41–47 days) and RT 5×3 Gy (48–62 days) (p<0.05). In a comparative aspect, there was a tendency to optimize survival rates in the 5-ALA + RT 5×2 Gy group (53–67 days) to the RT 5×2 Gy group (p=0.24) [22].

Several clinical trials have been initiated in large cohorts of patients to evaluate the safety and tolerability of RDT. Thus, the clinical trial “A Phase I Dose Finding Study Of Low-dose Radiation With Sensitization Using 5-aminolevulinic Acid In Advanced Malignancies”, which is based on the determination of optimal doses of RT and PS in patients with various nosological forms of malignant neoplasms (solid tumors of the head and neck, chest and abdominal cavities, small pelvis) was launched...
Experimental in vivo studies of the antitumor efficacy of photodynamic and radiodynamic therapy and their combinations by Fox Chase Cancer Center (USA) in July 2020. The study is planned to include 130 patients. As a PS, 5-ALA is used in 3 doses. Irradiation is carried out fractionally, the course of therapy is carried out once and is 21 days. In the future, patients are under dynamic observation for 56 days to assess the frequency and severity of adverse reactions, as well as preliminary data on the antitumor efficacy of the method [23].

A clinical trial “Phase I/II Dose Escalation Trial of Radiodynamic Therapy (RDT) With 5-Aminolevulinic Acid in Patients With First Recurrence of Glioblastoma” led by Prof. Stummer W. (University Hospital Münster, Germany) started in October 2022. It is planned to include 34 patients with a recurrent form of glioblastoma (the first recurrence after combined or complex treatment). 5-ALA is used as a PS. Irradiation will be fractionated, and the aim of the study will be to determine the maximum tolerated doses of PS and RT, as well as the optimal number of RDT sessions. Patient survival rates (overall 6-month survival, 6-month progression-free survival, etc.) will be studied as criteria for antitumor efficacy [24].

The analyzed data testify to the significant prospects of this direction in experimental oncology. The results obtained in experiments in vitro/in vivo allow to conclude that several PS have radiosensitizing properties, which creates prerequisites for optimizing and further improving the combined and complex therapy of patients with malignant neoplasms of various localizations.

Conclusion

PDT is a method of therapy for precancerous diseases and malignant neoplasms, demonstrating high antitumor efficacy against these diseases in experimental and clinical oncology [25, 26, 27]. Nevertheless, to optimize the use of PDT, it is advisable to use it in combination with a number of other methods of therapy. Pilot data obtained on the basis of an analysis of the immediate and long-term results of an experimental study on transplantable tumors in rats indicate a pronounced trend towards a higher antitumor effect of combined treatment, including the use of PS followed by RDT and PDT sessions with a single irradiation regimen compared to RDT and PDT in monodomains. No publications devoted to the study of the effectiveness of the combined use of PS of the chlorin series and these methods of therapy, demonstrating positive results, were found in the available literature sources, which allows to conclude that it is necessary and promising to develop deeper research in this direction.

This work was financially supported by the National Academy of Sciences of Belarus (grant no. 2021-61-284, task 3.05.3).

REFERENCES

ЛИТЕРАТУРА

Experimental in vivo studies of the antitumor efficacy of photodynamic and radiodynamic therapy and their combinations

23. ClinicalTrials.gov Identifier: NCT04381806.

24. ClinicalTrials.gov Identifier: NCT05590689.

