Preview

Biomedical Photonics

Advanced search

TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY

Abstract

Oxygen content in body fluids and tissues is an important indicator of life support functions. A number of ocular pathologies, e.g. glaucoma, are of presumable vascular origin which means altered blood supply and oxygen circulation. Most oxygen is transported in the blood in the association with hemoglobin. When passing through the capillaries, hemoglobin releases oxygen, converting from oxygenated form to deoxygenated form. This process is accompanied by the changes in spectral characteristics of hemoglobin which result in different colors of arterial and venous blood. Photometric technique for the measurement of oxygen saturation in blood is based on the differences in light absorption by different forms of hemoglobin. The measurement of saturation is called oximetry. Pulse oximetry with assessment of tissue oxygenation is the most commonly used method in medicine. The degree of hemoglobin oxygen saturation in the eye blood vessels is the most accessible for noninvasive studies during ophthalmoscopy and informative. Numerous studies showed the importance of this parameter for the diagnosis of retinopathy of various genesis, metabolic status analysis in hyperglycemia, diagnosis and control of treatment of glaucoma and other diseases involving alterations in eye blood supply. The specific method for evaluation of oxygen concentration is the measurement of pressure of oxygen dissolved in the blood, i.e. partial pressure of oxygen. In ophthalmological practice, this parameter is measured in anterior chamber fluid evaluating oxygen level for several ophthalmopathies including different forms of glaucoma, for instillations of hypotensive eye drops as well as in vitreous body near to the optic disc under various levels of intraocular pressure. Currently, monitoring of oxygen saturation in retinal blood vessels, i.e. retinal oximetry, is well developed. This technique is based on the assessment of light absorption by blood depending on hemoglobin saturation with oxygen by analyzing spectral composition of light diffusively reflected from the retina. Oximetry of bulbar conjunctival and episcleral microvasculature can be also performed allowing for the evaluation of oxygen saturation in vessels which collect blood from the anterior segment and the characterization of anterior segment metabolism in a number of ocular pathologies and in the course of the treatment.

About the Authors

S. Yu. Petrov
The Scientific Research Institute of Eye Diseases
Russian Federation
Moscow, Russia


A. A. Antonov
The Scientific Research Institute of Eye Diseases
Russian Federation
Moscow, Russia


I. A. Novikov
The Scientific Research Institute of Eye Diseases
Russian Federation
Moscow, Russia


T. A. Savelieva
General Physics Institute of the Russian Academy of Sciences National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation
Moscow, Russia


References

1. Pflüger E.F.W., Arch Gesamte Physiol., 1872, Vol. 6, p. 43.

2. Mozaffarieh M., Grieshaber M.C., Flammer J. Oxygen and blood flow: players in the pathogenesis of glaucoma, Molecular vision, 2008, Vol. 14, pp. 224-233.

3. Kuz'kov V.V., Kirov M.Yu., Smetkin A.A. Monitoring of venous oxygen saturation. Invasive monitoring of hemodynamics in intensive therapy and anesthesiology, Arkhangel’sk, SGMU Publ., 2008, pp. 193-207.

4. Zijlstra W.G., Buursma A., van Assendelft O.W. Visible and near infrared absorption spectra of human and animal haemoglobin: determination and application, Utrecht, Boston, VSP Publ., 2000, 368 p.

5. Shurygin I.A. Respiratory monitoring: pulse oximetry, capnography, oximetry, Moscow, BINOM Publ., 2000, 301 p.

6. Vierordt K. Quantitative spectral analysis applied to physiology, physics, chemistry and technology, Tübingen, H. Laupp'sche Buchhandlung Publ., 1876. (in German).

7. Severinghaus J.W. Takuo Aoyagi: discovery of pulse oximetry, Anesthesia and analgesia, 2007, Vol. 105, Suppl. 6, pp. 1-4.

8. Harvey L., Edmonds Jr. Pro: all cardiac surgical patients should have intraoperative cerebral oxygenation monitoring, Journal of cardiothoracic and vascular anesthesia, Vol. 20, No. 3, pp. 445-449.

9. Cortez J., Gupta M., Amaram A., Pizzino J., Sawhney M., Sood B.G. Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates, J Matern Fetal Neonatal Med, 2011, Vol. 24, No. 4, pp. 574-582.

10. Clark L.C. Measurement of oxygen tension: a historical perspective, Crit Care Med, 1981, Vol. 9, pp. 960-962.

11. Stow R.W, Randall B.F. Electrical measurement of the pCO2 of blood, Am J Physiol, 1954, Vol. 179, p. 678.

12. Liu P., Zhu Z., Zeng C., Nie G. Specific absorption spectra of hemoglobin at different po2 levels: potential noninvasive method to detect PO2 in tissues, J.Biomed.Opt., 2012, Vol. 17, No. 12, 125002.

13. Morozov V.I., Yakovlev A.A. Pharmacotherapy of eye diseases, Moscow, MEDpress-inform Publ., 2009, 512 p.

14. Drenckhahn F.O., Lorenzen U.K. Oxygen pressure in the anterior chamber of the eye and the rate of oxygen saturation of the aqueous humor, Albrecht von Graefe's Archiv fur Ophthalmologie, 1958, Vol. 160, No. 4, pp. 378-387.

15. Jacobi K.W. Continuous measurement of oxygen partial pressure in the anterior chamber of the living rabbit eye, Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie Albrecht von Graefe's archive for clinical and experimental ophthalmology, 1966, Vol. 169, No. 4, pp. 350-356.

16. Wegener J.K., Moller P.M. Oxygen tension in the anterior chamber of the rabbit eye, Acta ophthalmologica, 1971, Vol. 49, No. 4, pp. 577-584.

17. Roetman E.L. Oxygen gradients in the anterior chamber of anesthetized rabbits, Investigative ophthalmology, 1974, Vol. 13, No. 5, pp. 386-389.

18. Pakalnis V.A., Rustgi A.K., Stefansson E., Wolbarsht M.L., Landers M.B. The effect of timolol on anterior-chamber oxygenation, Annals of ophthalmology, 1987, Vol. 19, No. 8, pp. 298-300.

19. Helbig H., Schlotzer-Schrehardt U., Noske W., Kellner U., Foerster M.N., Naumann G.O. Anterior-chamber hypoxia and iris vasculopathy in pseudoexfoliation syndrome, German journal of ophthalmology, 1994, Vol. 3, No. 3, pp. 148-153.

20. Cristini G. Uveal consumption of oxygen in the glaucomatous eye, Annales d'oculistique, 1954, Vol. 187, No. 5, pp. 401-408.

21. Trutneva K.V., Zaretskaya R.B., Zubareva T.V. Investigations of oxygenation in ophthalmology, Vestnik oftal'mologii, 1970, No. 5, pp. 23-28. (in Russian).

22. New methods of functional diagnostics in ophthalmology, by eds. K.V. Trutheva. Moscow, 1973, pp. 112-135.

23. Trutneva K.V., Zaretskaya R.B., Zhdanov V.K. New opportunities of the objective comprehensive study of the oxygen metabolism in patients with ocular pathology, Vestnik oftal'mologii, 1977, No. 1, pp. 45-50. (in Russian).

24. Zaretskaya R.B., Trutneva K.V. To mechanism of alteration of oxygen metabolism patients with glaucoma, Vestnik oftal'mologii, 1978, No. 5, pp. 5-10. (in Russian).

25. Cohan B.E., Cohan S.B. Flow and oxygen saturation of blood in the anterior ciliary vein of the dog eye, The American journal of physiology, 1963, Vol. 205, pp. 60-66.

26. Elgin S.S. Arteriovenous Oxygen Difference across the Uveal Tract of the Dog Eye, Investigative ophthalmology, 1964, Vol. 3, pp. 417-426.

27. Alm A., Bill A. Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures, Acta physiologica Scandinavica, 1970, Vol. 80, No. 1, pp. 19-28.

28. Tornquist P., Alm A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs, Acta physiologica Scandinavica, 1979, Vol. 106, No. 3, pp. 351-357.

29. Gamm E.G., Puchkov S.G. Oxygen saturation of blood in the anterior ciliary veins in patients with primary glaucoma, Acta ophthalmologica, 1985, Vol. 63, No. 4, pp. 408-410.

30. Delpy D.T., Cope M., van der Zee P., Arridge S., Wray S., Wyatt J. Estimation of optical path length through tissue from direct time of flight measurements, Phys. Med. Biol., 1988, Vol. 33, pp. 1433-1442.

31. Smith M.H. Optimum wavelength combinations for retinal vessel oximetry, Applied optics, 1999, Vol. 38, No. 1, pp. 258-267.

32. Hickam J.B., Sieker H.O., Frayser R. Studies of retinal circulation and A-V oxygen difference in man, Transactions of the American Clinical and Climatological Association, Vol. 71, pp. 34-44.

33. Hickam J.B., Frayser R., Ross J.C. A study of retinal venous blood oxygen saturation in human subjects by photographic means, Circulation, 1963, Vol. 27, pp. 375-385.

34. Delori F.C., Gragoudas E.S., Francisco R., Pruett R.C. Monochromatic ophthalmoscopy and fundus photography. The normal fundus, Archives of ophthalmology, 1977, Vol. 95, No. 5, pp. 861-868.

35. Delori F.C. Noninvasive technique for oximetry of blood in retinal vessels, Appl. Opt., 1988, Vol. 27, pp. 1113-1125.

36. Pittman R.N., Duling B.R. Measurement of percent oxyhemoglobin in the microvasculature, Journal of applied physiology, 1975, Vol. 38, No. 2, pp. 321-327.

37. Tiedeman J.S., Kirk S.E., Srinivas S., Beach J.M. Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy, Ophthalmology, 1998, Vol. 105, No. 1, pp. 31-36.

38. de Kock J.P., Tarassenko L., Glynn C.J., Hill A.R. Reflectance pulse oximetry measurements from the retinal fundus, IEEE transactions on bio-medical engineering, 1993, Vol. 40, No. 8, pp. 817-823.

39. Schweitzer D., Thamm E., Hammer M., Kraft J. A new method for the measurement of oxygen saturation at the human ocular fundus, International ophthalmology, 2001, Vol. 23, No. 4-6, pp. 347-353.

40. Hammer M., Thamm E., Schweitzer D. A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering, Physics in medicine and biology, 2002, Vol. 47, pp. 233-238.

41. Hardarson S.H., Harris A., Karlsson R.A., Halldorsson G.H., Kagemann L., Rechtman E., Zoega G.M., Eysteinsson T., Benediktsson J.A., Thorsteinsson A., Jensen P.K., Beach J., Stefánsson E. Automatic retinal oximetry, Investigative Ophthalmology & Visual Science, 2006, Vol.47, pp. 5011-5016.

42. Narasimha-Iyer H., Beach J.M., Khoobehi B., Kawano H., Roysam B. Algorithms for automated oximetry along the retinal vascular tree from dual-wavelength fundus images, Journal of Biomedical Optics, 2005, Vol. 10(5), 054013.

43. Denninghoff K.R., Chipman R.A., Hillman L.W. Oxyhemoglobin saturation measurements by green spectral shift, Optics letters, 2006, Vol. 31, No. 7, pp. 924-926.

44. Denninghoff K.R., Sieluzycka K.B., Hendryx J.K., Ririe T.J., Deluca L., Chipman R.A. Retinal oximeter for the blue-green oximetry technique, Journal of biomedical optics, 2011, Vol. 16(10), 107004.

45. Alabboud I., Muyo G., Gorman A., Mordant D., McNaught A., Petres C., Petillot Y.R., Harvey A.R. New spectral imaging techniques for blood oximetry retina, Proceedings of SPIE - The International Society for Optical Engineering, 2007, Vol. 6631.

46. Johnson W.R., Wilson D.W., Fink W., Humayun M., Bearman G. Snapshot hyperspectral imaging in ophthalmology, Journal of biomedical optics, 2007, Vol. 12(1), 014036.

47. Palsson O., Geirsdottir A., Hardarson S.H., Olafsdottir O.B., Kristjansdottir J.V., Stefánsson E. Retinal oximetry images must be standardized: a methodological analysis, Investigative ophthalmology & visual science, 2012, Vol. 53, No. 4, pp. 1729-1733.

48. Li H., Lu J., Shi G., Zhang Y. Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope, J. Biomed. Opt., 2011, Vol. 11, No. 16, 110504.

49. Roorda A., Romero-Borja F., Donnelly III W.J., Queener H., Hebert T.J., Campbell M.C.W. Adaptive optics scanning laser ophthalmoscopy, Opt. Express., 2002, Vol. 10, No. 9, pp. 405-412.

50. Li H., Lu J., Shi G., Zhang Y. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLTSIFT algorithm, Biomed. Opt. Express, 2010, Vol. 1, No. 1, pp. 31-40.

51. Webb R.H., Hughes G.W. Scanning laser ophthalmoscope, IEEE Transactions on Biomedical Engineering, 1981, Vol. 28, pp. 488-492.

52. Liang J., Williams D.R., Miller D.T. Supernormal vision and high-resolution retinal imaging through adaptive optics, Journal of the Optical Society of America A, 1997, Vol. 14, No. 11, pp. 2884-2892.

53. Ashman R.A., Reinholz F., Eikelboom R.H. Oximetry with a multiple wavelength SLO, International ophthalmology, 2001, Vol. 23, No. 4-6, pp. 343-346.

54. Mordant D.J., Al-Abboud I., Muyo G., Gorman A., Sallam A., Ritchie P., Harvey A.R., McNaught A.I. Spectral imaging of the retina, Eye (London, England), 2011, Vol. 25, No. 3, pp. 309-320.

55. Patel C.K., Fung T.H., Muqit M.M., Mordant D.J., Brett J., Smith L., Adams E. Non-contact ultra-widefield imaging of retinopathy of prematurity using the Optos dual wavelength scanning laser ophthalmoscope, Eye (London, England), 2013, Vol. 27, No. 5, pp. 589-596.

56. Kristjansdottir J.V., Hardarson S.H., Halldorsson G.H., Karlsson R.A., Eliasdottir T.S., Stefánsson E. Retinal oximetry with a scanning laser ophthalmoscope, Investigative ophthalmology & visual science, 2014, Vol. 55, No. 5, pp. 3120-3126.

57. Vehmeijer W.B., Magnusdottir V., Eliasdottir T.S., Hardarson S.H., Schalij- Delfos N.E., Stefánsson E. Retinal Oximetry with Scanning Laser Ophthalmoscope in Infants, PLOS ONE, 2016, Vol. 11(2), e0148077.

58. Savel'eva T.A., Lin'kov K.G., Model' S.S., Petrov S.Yu., Antonov A.A. Visualization of ocular vessel oxygenation, Biomedical photonics, 2016, No. 5, p. 13. (in Russian).

59. Mayrovitz H.N., Larnard D., Duda G. Blood velocity measurement in human conjunctival vessels, Cardiovascular diseases, 1981, Vol. 8, No. 4, pp. 509-526.

60. Shmyreva V.F., Petrov S.Yu., Antonov A.A., Stratonnikov A.A., Savel'eva T.A., Shevchik S.A., Ryabova A.V., Uryvaev Yu.V. Anterior segment of the eye tissue metabolism study by the level of oxygenation of hemoglobin in the venous bed with primary open angle glaucoma, Glaukoma, 2008, No. 3, pp. 3-10. (in Russian).

61. Shmyreva V.F., Petrov S.Yu., Antonov A.A., Siplivyi V.I., Stratonnikov A.A., Savel'eva T.A., Shevchik S.A., Ryabova A.V. Method for evaluation of subconjunctival vascular oxygenation using reflected light spectroscopy (experimental study), Glaukoma, 2008, No. 2, pp. 9-14. (in Russian).


Review

For citations:


Petrov S.Yu., Antonov A.A., Novikov I.A., Savelieva T.A. TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY. Biomedical Photonics. 2016;5(4):35-43. (In Russ.)

Views: 51675


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)