Preview

Biomedical Photonics

Расширенный поиск

Спектроскопическое исследование метиленового синего in vivo: влияние на оксигенацию тканей и опухолевый метаболизм

https://doi.org/10.24931/2413-9432-2023-12-1-4-13

Полный текст:

Аннотация

Метиленовый синий (МС) является перспективным фотосенсибилизатором для терапии патологических новообразований, поскольку обладает как фотодинамической активностью (при лазерном облучении), так и окислительно-восстановительными и каталитическими свойствами (в отсутствии света). В рамках данной работы при помощи спектроскопических методов было проанализировано влияние внутривенного введения МС на тканевую оксигенацию гемоглобина на малых животных in vivo в опухоли и нормальных тканях. Проведен анализ влияния МС на клеточный метаболизм. Показано, что применение МС способствует увеличению потребления кислорода опухолью, а также приводит к сдвигу метаболизма в сторону окислительного фосфорилирования.

Об авторах

Д. В. Поминова
Институт общей физики им. А. М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»
Россия

Москва



А. В. Рябова
Институт общей физики им. А. М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»
Россия

Москва



А. С. Скобельцин
Институт общей физики им. А. М. Прохорова Российской академии наук
Россия

Москва



И. В. Маркова
Национальный исследовательский ядерный университет «МИФИ»
Россия

Москва



И. Д. Романишкин
Институт общей физики им. А. М. Прохорова Российской академии наук
Россия

Москва



В. Б. Лощенов
Институт общей физики им. А. М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»
Россия

Москва



Список литературы

1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // Global cancer statistics 2018. – № 6. – P. 394-424.

2. Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm // Nature 1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // Global cancer statistics 2018. – № 6. – P. 394-424.

3. Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm // Nature Immunology. – 2010. – Vol. 11. – Macrophage plasticity and interaction with lymphocyte subsets. – 10. – P. 889-896.

4. Pranzini E., Pardella E., Paoli P., Fendt S.-M., Taddei M.L. Metabolic Reprogramming in Anticancer Drug Resistance: A Focus on Amino Acids // Trends in Cancer. – 2021. – Vol. 7. – Metabolic Reprogramming in Anticancer Drug Resistance. – № 8. – P. 682-699.

5. Persi E., Duran-Frigola M., Damaghi M., Roush W.R., Aloy P., Cleveland J.L., Gillies R.J., Ruppin E. Systems analysis of intracellular pH vulnerabilities for cancer therapy // Nature Communications. – 2018. – Vol. 9. – № 1.

6. Chen D., Xie J., Fiskesund R., Dong W., Liang X., Lv J., Jin X., Liu J., Mo S., Zhang T., Cheng F., Zhou Y., Zhang H., Tang K., Ma J., Liu Y., Huang B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype// Nature Communications. – 2018. – Vol. 9. – № 1.

7. Wu A.A., Drake V., Huang H.-S., Chiu S., Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells // OncoImmunology. – 2015. – Vol. 4. – Reprogramming the tumor microenvironment. – № 7. – P. e1016700.

8. Huber V., Camisaschi C., Berzi A., Ferro S., Lugini L., Triulzi T., Tuccitto A., Tagliabue E., Castelli C., Rivoltini L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation // Seminars in Cancer Biology. – 2017. – Vol. 43. – Cancer acidity. – P. 74-89.

9. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation // Science. – 2009. – Vol. 324. – Understanding the Warburg Effect. – № 5930. – P. 1029-1033.

10. Colegio O.R., Chu N.-Q., Szabo A.L., Chu T., Rhebergen A.M., Jairam V., Cyrus N., Brokowski C.E., Eisenbarth S.C., Phillips G.M., Cline G.W., Phillips A.J., Medzhitov R. Functional polarization of tumourassociated macrophages by tumour-derived lactic acid // Nature. – 2014. – Vol. 513. – № 7519. – P. 559-563.

11. 2018 Nobel Prize in Physiology or Medicine James pp. Allison and Tasuku Honjo “For their discovery of cancer therapy by inhibition of negative immune regulation”

12. Blaylock R. Cancer microenvironment, inflammationammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control // Surgical Neurology International. – 2015. – Vol. 6. – Cancer microenvironment, inflammationammation and cancer stem cells. – № 1. – P. 92.

13. Correia J.H., Rodrigues J.A., Pimenta S., Dong T., Yang Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions // Pharmaceutics. – 2021. – Vol. 13. – Photodynamic Therapy Review. – № 9. – P. 1332.

14. Fleury C., Mignotte B., Vayssière J.-L. Mitochondrial reactive oxygen species in cell death signaling // Biochimie. – 2002. – Vol. 84. – № 2-3. – P. 131-141.

15. Villalpando-Rodriguez G.E., Gibson S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat // Oxidative Medicine and Cellular Longevity. – 2021. – Vol. 2021. – P. 1-17.

16. Kuznetsov V.V. The use of photod ynamic therapy in the domestic oncology (Review of the literature) // Research’n Practical Medicine Journal. – 2016. – Vol. 2. – № 4. – P. 98-105.

17. Reshetov I.V., Korenev S.V., Romanko Yu.S. Modern aspects of photodynamic therapy of basal cell skin cancer // Biomedical Photonics. – 2022. – Vol. 11. – № 3. – P. 35-39.

18. Stranadko E.F. Main stages of development of photodynamic therapy in Russia // Biomedical Photonics. – 2015. – Vol. 4. – № 1. – P. 3-10.

19. Panaseykin Y.A., Kapinus V.N., Filonenko E.V., Polkin V.V., Sevrukov F.E., Isaev P.A., Ivanov S.A., Kaprin A.D. Photodynamic therapy treatment of oral cavity cancer in patients with comorbidities // Biomedical Photonics. – 2023. – Vol. 11. – № 4. – P. 19-24.

20. Klimenko V.V., Knyazev N.A., Moiseenko F.V., Rusanov A.A., Bogdanov A.A., Dubina M.V. Pulse mode of laser photodynamic treatment induced cell apoptosis // Photodiagnosis and Photodynamic Therapy. – 2016. – Vol. 13. – P. 101-107.

21. Mansoori B., Mohammadi A., Amin Doustvandi M., Mohammadnejad F., Kamari F., Gjerstorff M.F., Baradaran B., Hamblin M.R. Photodynamic therapy for cancer: Role of natural products // Photodiagnosis and Photodynamic Therapy. – 2019. – Vol. 26. – Photodynamic therapy for cancer. – P. 395-404.

22. Spring B.Q., Rizvi I., Xu N., Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance // Photochemical & Photobiological Sciences. – 2015. – Vol. 14. – № 8. – P. 1476-1491.

23. Brown S.B., Brown E.A., Walker I. The present and future role of photodynamic therapy in cancer treatment // The Lancet Oncology. – 2004. – Vol. 5. – № 8. – P. 497-508.

24. Brooks M.M. The Mechanism of Methylene Blue Action on Blood // Science. – 1934. – Vol. 80. – № 2062. – P. 15-16.

25. Brooks M.M. Methylene blue as antidote for cyanide and carbon monoxide poisoning // JAMA: The Journal of the American Medical Association. – 1933. – Vol. 100. – № 1. – P. 59.

26. Wendel W.B. The Mechanism of the Antidotal Action of Methylene Blue in Cyanide Poisoning // Science. – 1934. – Vol. 80. – № 2078. – P. 381-382.

27. Wendel W.B. The control of methemoglobinemia with methylene blue // Journal of Clinical Investigation. – 1939. – Vol. 18. – № 2. – P. 179-185.

28. Chen K.K. Nitrite and thiosulfate therapy in cyanide poisoning // Journal of the American Medical Association. – 1952. – Vol. 149. – № 2. – P. 113.

29. Barron E.S.G. The catalytic effect of methylene blue on the oxygen consumption of tumors and normal tissues // Journal of Experimental Medicine. – 1930. – Vol. 52. – № 3. – P. 447-456.

30. Sevcik P., Dunford H.B. Kinetics of the oxidation of NADH by methylene blue in a closed system // The Journal of Physical Chemistry. – 1991. – Vol. 95. – № 6. – P. 2411-2415.

31. Engbersen J.F.J., Koudijs A., Van Der Plas H.C. Reaction of NADH models with methylene blue // Recueil des Travaux Chimiques des Pays-Bas. – 2010. – Vol. 104. – № 5. – P. 131-138.

32. Schirmer R.H., Adler H., Pickhardt M., Mandelkow E. “Lest we forget you — methylene blue …” // Neurobiology of Aging. – 2011. – Vol. 32. – № 12. – P. 2325.e7-2325.e16.

33. Buchholz K., Schirmer R.H., Eubel J.K., Akoachere M.B., Dandekar T., Becker K., Gromer S. Interactions of Methylene Blue with Human Disulfidede Reductases and Their Orthologues from Plasmodium falciparum // Antimicrobial Agents and Chemotherapy. – 2008. – Vol. 52. – № 1. – P. 183-191.

34. Komlódi T., Tretter L. Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl–CoA ligase in the citric acid cycle // Neuropharmacology. – 2017. – Vol. 123. – P. 287-298.

35. Zhang H., Rogiers P., Preiser J.-C., Spapen H., Manikis P., Metz G., Vincent J.-L. Effects of methylene blue on oxygen availability and regional blood flowow during endotoxic shock // Critical Care Medicine. – 1995. – Vol. 23. – № 10. – P. 1711-1721.

36. Tepaev R.F., Vishnevskiy V.A., Kuzin S.A., Sergey I.V., Gordeeva O.B., Pytal A.V., Murashkin N.N. Benzocaine-Induced Methemoglobinemia. A Clinical Case // Pediatric pharmacology. – 2018. – Vol. 15. – № 5. – P. 396-401.

37. Peter C., Hongwan D., Küpfer A., Lauterburg B.H. Pharmacokinetics and organ distribution of intravenous and oral methylene blue // European Journal of Clinical Pharmacology. – 2000. – Vol. 56. – № 3. – P. 247-250.

38. Lee S.-K., Mills A. Novel photochemistry of leuco-Methylene Blue // Chemical Communications. – 2003. – № 18. – P. 2366.

39. Stratonnikov A.A., Loschenov V.B. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra // Journal of Biomedical Optics. – 2001. – Vol. 6. – № 4. – P. 457.

40. Sharick J.T., Favreau P.F., Gillette A.A., Sdao S.M., Merrins M.J., Skala M.C. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon/ / Scientific Reports. – 2018. – Vol. 8. – № 1. – P. 5456.

41. Kalinina S., Freymueller C., Naskar N., Von Einem B., Reess K., Sroka R., Rueck A. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques // International Journal of Molecular Sciences. – 2021. – Vol. 22. – № 11. – P. 5952.

42. Ranjit S., Malacrida L., Jameson D.M., Gratton E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach// Nature Protocols. – 2018. – Vol. 13. – № 9. – P. 1979-2004.

43. Worth K.R., Papandreou I., Hammond E.M. How the histological structure of some lung cancers shaped almost 70 years of radiobiology // British Journal of Cancer. – 2023. – Vol. 128. – № 3. – P. 407-412.


Рецензия

Для цитирования:


Поминова Д.В., Рябова А.В., Скобельцин А.С., Маркова И.В., Романишкин И.Д., Лощенов В.Б. Спектроскопическое исследование метиленового синего in vivo: влияние на оксигенацию тканей и опухолевый метаболизм. Biomedical Photonics. 2023;12(1):4-13. https://doi.org/10.24931/2413-9432-2023-12-1-4-13

For citation:


Pominova D.V., Ryabova A.V., Skobeltsin A.S., Markova I.V., Romanishkin I.D., Loschenov V.B. Spectroscopic study of methylene blue in vivo: effects on tissue oxygenation and tumor metabolism. Biomedical Photonics. 2023;12(1):4-13. https://doi.org/10.24931/2413-9432-2023-12-1-4-13

Просмотров: 273


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)