INVESTIGATION OF CHLORIN PHOTOSENSITIZERS DISTRIBUTION IN MONOLAYER AND SPHEROID CELL CULTURES
https://doi.org/10.24931/2413-9432-2017-6-2-4-11
Abstract
The aim of this study was to analyze the distribution of chlorin type photosensitizers (PS): chlorin e6 (Ce6) and dimethyl ester of chlorin e6 (DME), in human adenocarcinoma HT29 monolayer and multicellular spheroid cell cultures. There is an assumption, that the chemical modification of Ce6 molecules causes a change of intracellular location and the enhanced photosensitizing activity. Indeed, photodynamic therapy on monolayer cell culture with DME showed two times higher photokilling ability comparing with that of non-modified analogue.
Ce6 and DME biodistribution processes in tumor tissue were studied on multicellular tumor spheroids model. Total amount of DME in multicellular tumor spheroids exceeded 1,3 times accumulation of Ce6. According to fluorescence microscopy studies, Ce6 and DME distribution patterns in the spheroids bulk were similar. Application of 2D and 3D tumor models for the analysis of photosensitizer distribution may allow predicting the photosensitizer biodistribution features for photodynamic therapy in vivo.
About the Authors
D. S. FarrakhovaRussian Federation
Moscow
I. V. Yakavets
Belarus
Minsk, Nancy, Vandoeuvre-lès-Nancy
V. B. Loschenov
Russian Federation
Moscow
L. N. Bolotine
Russian Federation
Nancy, Vandoeuvre-lès-Nancy
V. P. Zorin
Belarus
Minsk
References
1. Baker A., Kanofsky J.R. Quenching of singlet oxygen by biomolecules from L1210 leukemia cells, Photochem. Photobiol., 1992, Vol. 55, No. 4, pp. 523-528.
2. Moan J. On the diffusion length of singlet oxygen in cells and tissues, J. Photochem. Photobiol. B., 1990, Vol. 6, No. 3, pp. 343-344.
3. Shliakhtsin S.V., Trukhachova T.V., Isakau H.A., Istomin Y.P. Pharmacokinetics and biodistribution of Photolon (Fotolon) in intact and tumor-bearing rats, Photodiagnosis Photodyn. Ther., 2009, Vol. 6, No. 2, pp. 97-104.
4. Kochneva E.V., Filonenko E.V., Vakulovskaya E.G., Scherbakova E.G., Seliverstov O.V., Markichev N.A., Reshetnickov A.V. Photosensitizer Radachlorin: Skin cancer PDT phase II clinical trials, Photodiagnosis Photodyn. Ther., 2010, Vol. 7, No. 4, pp. 258-267.
5. Zorina T.E., Yankovskii I.V., Kravchenko I.E., Shman I.E., Zorin V.P. Liposomal formulations of chlorin e6 ester derivatives and features of their cellular uptake, BSU Her., 2013, No. 3, pp. 30-35.
6. Zorin V.P., Michalovsky I.S., Zorina T.E., Khludeyev I.I. Distribution of chlorin-e6 derivatives in biological systems: investigation of pH-effect, Proceeding SPIE, 1996, Vol. 2625, pp. 146-155.
7. Sokolov S.N., Fedoruk S.L., Trukhacheva T.V., Kheidorov V.P. 131,152-Dimethyl ester of chlorin e6 is a new photosensitizer. the proof of structure and purity, Vestnik Farmatsii, 2016, No. 4 (74), pp. 53-61. (in Russian).
8. Zorin V.P., Khludeyev I.I, Mikhalovsky I.S., Zorina T.E., Savitskiy V.P., Kochubyeva N.D., Kravchenko I.E. Kinetic characteristics of porphyrin distribution in the blood, Proceeding SPIE, 2000, Vol. 4059, pp. 139-146.
9. Savitsky V.P., Zorin V.P., Potapnev M.P. Selective phototoxicity of chlorin-e6 derivatives toward leukemic cells, Exp. Oncol., 2002, Vol. 24, No. 2, pp. 142-144.
10. Khanna S., Bhatt A.N., Dwarakanath B.S. Chapter 11 – Multicellular Spheroid: 3-D Tissue Culture Model for Cancer Research A2 – Verma, Ashish S. In Animal Biotechnology, by ed. Singh A. San Diego, Academic Press Publ., 2014. pp. 195-210.
11. Patel N.R., Aryasomayajula B., Abouzeid A.H., Torchilin V.P. Cancer cell spheroids for screening of chemotherapeutics and drugdelivery systems, Ther. Deliv., 2015, Vol. 6, No. 4, pp. 509-520.
12. Losev A.P., Nichiporovich I.N., Zhuravkin I.N, Zhavrid E.I. Energetics of chlorins as potent photosensitizers of PDT, Proceeding SPIE, 1996, Vol. 2924, pp. 40-48.
13. Mojzisova H., Bonneau S., Vever-Bizet C., Brault D. Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins, Biochim. Biophys. Acta., 2007,Vol. 1768, No. 11, pp. 2748-2756.
14. Bastien E., Schneider R., Hackbarth S., Dumas D., Jasniewski J., Röder B., Bezdetnaya L., Lassalle H.P. PAMAM G4.5-chlorin e6 dendrimeric nanoparticles for enhanced photodynamic effects, Photochem. Photobiol. Sci., 2015, Vol. 14, No. 12, pp. 2203-2212.
15. Zorina T.E., Yankovsky I.V., Kravchenko I.E., Zorin V.P., Shman T.V., Belevtsev M.V. Evaluation of Phototoxicity and cytotoxicity for chlorin e6 ester derivatives and their liposomal forms, Biophysics, 2015, Vol. 60, No. 5, pp. 759-766.
16. Cunderlíková B., Gangeskar L., Moan J. Acid-base properties of chlorin e6: relation to cellular uptake, J. Photochem. Photobiol. B., 1999, Vol. 53, No. 1-3, pp. 81-90.
17. Zorin V.P. et al. Intraand intermembrane distribution of chlorin e6 derivatives, Proceedings SPIE, 1994, Vol. 2325, pp. 87-101.
18. Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagnosis Photodyn. Ther., 2004, Vol. 1, No. 4, pp. 279-293.
19. Jori G., Reddi E. The role of lipoproteins in the delivery of tumourtargeting photosensitizers, Int. J. Biochem., 1993, Vol. 25, No. 10, pp. 1369-1375.
20. Akhlynina T.V., Rosenkranz A.A., Jans D.A., Sobolev A.S. Insulinmediated intracellular targeting enhances the photodynamic activity of chlorin e6, Cancer Res., 1995, Vol. 55, No. 5, pp. 1014-1019.
21. Oleinick N.L., Morris R.L., Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, Vol. 1, No. 1, pp. 1-21.
22. Gurinovich G.P., Zorina T.E., Melnov S.B., Melnova N.I., Gurinovich I.F., Grubina L.A., Sarzhevskaya M.V., Cherenkevich S.N. Photodynamic activity of chlorin e6 and chlorin e6 ethylenediamide in vitro and in vivo, J. Photochem. Photobiol. B., 1992, Vol. 13, No. 1, pp. 51-57.
23. Sheleg S.V., Zhavrid E.A., Khodina T.V., Kochubeev G.A., Istomin Y.P., Chalov V.N., Zhuravkin I.N. Photodynamic therapy with chlorin e(6) for skin metastases of melanoma, Photodermatol. Photoimmunol. Photomed., 2004, Vol. 20, No. 1, pp. 21-26.
24. Luo W., Liu R.S., Zhu J.G., Li Y.C., Liu H.C. Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line, Oncol. Lett., 2015, Vol. 9, No. 2, pp. 551-556.
25. West C.M., Moore J.V. Mechanisms behind the resistance of spheroids to photodynamic treatment: a flow cytometry study, Photochem. Photobiol., 1992, Vol. 55, No. 3, pp. 425-430.
26. Yuan A., Yang B., Wu J., Hu Y., Ming X. Dendritic nanoconjugates of photosensitizer for targeted photodynamic therapy, Acta Biomater., 2015, Vol. 21, pp. 63-73.
27. Gaio E., Scheglmann D., Reddi E., Moret F. Uptake and phototoxicity of Foscan®, Foslip® and Fospeg® in multicellular tumor spheroids, J. Photochem. Photobiol. B., 2016, Vol. 161, pp. 244-252.
28. Coutier S., Bezdetnaya L.N., Foster T.H., Parache R.M., Guillemin F. Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice, Radiat. Res., 2002, Vol. 158, No. 3,
Review
For citations:
Farrakhova D.S., Yakavets I.V., Loschenov V.B., Bolotine L.N., Zorin V.P. INVESTIGATION OF CHLORIN PHOTOSENSITIZERS DISTRIBUTION IN MONOLAYER AND SPHEROID CELL CULTURES. Biomedical Photonics. 2017;6(2):4-11. (In Russ.) https://doi.org/10.24931/2413-9432-2017-6-2-4-11