Preview

Biomedical Photonics

Расширенный поиск

ФОТОСЕНСИБИЛИЗАТОРЫ КАК РАДИОСЕНСИБИЛИЗИРУЮЩИЕ АГЕНТЫ В ЭКСПЕРИМЕНТАЛЬНОЙ И КЛИНИЧЕСКОЙ НЕЙРООНКОЛОГИИ

Полный текст:

Аннотация

В статье обобщены основные механизмы, лежащие в основе радиосенсибилизирующего эффекта фотосенсибилизаторов.

Как показал  анализ  литературных данных, многие авторы  считают, что ключевым звеном  в реализации  противоопухолевого эффекта ионизирующего излучения, переводящего молекулу фотосенсибилизатора из основного состояния в возбужденное, является образование активных форм кислорода. Их образование приводит к развитию окислительного стресса. Следствием реализации  индуцированного ионизирующим излучением окислительного стресс-синдрома  является апоптоз опухолевых клеток.

Первыми фотосенсибилизаторами, радиосенсибилизирующая активность которых была подтверждена  в экспериментальных исследованиях, были гематопрофирин и фотофрин II. В обзоре произведен подробный анализ результатов экспериментальных исследований радиосенсибилизирующего действия фотосенсибилизаторов на культурах клеток и лабораторных животных с перевивными штаммами злокачественных глиом (глиома С6, глиосаркома 9L, глиобластома U87-MG).

В ряде онкологических центров  метод радиосенсибилизации опухолей введением  фотосенсибилизаторов апробирован у пациентов с рецидивными глиомами головного мозга grade III-IV. Полученные результаты свидетельствуют о его хорошей переносимости и противоопухолевой эффективности.

В доступных источниках литературы нами не были найдены публикации, в основе которых лежит изучение радиосенсибилизирующего эффекта фотосенсибилизаторов хлоринового ряда, что делает актуальными дальнейшие исследования в этом направлении.

Об авторе

Д. А. Церковский
Республиканский научно-практический центр онкологии и медицинской радиологии им. Н.Н. Александрова
Беларусь

Лесной



Список литературы

1. Omuro A., DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review // JAMA. – 2013. – Vol. 310, No. 17. – P. 1842-1850.

2. Carlsson S.K., Brothers S.P., Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme // EMBO Mol Med. – 2014. – Vol. 6, No. 11. – P. 1359-1370.

3. Patel M.A., Kim J.E., Ruzevick J., et al. The future of glioblastoma therapy: synergism of standard of care and immunotherapy // Cancers. – 2014. – Vol. 6, No. 4. – P. 1953-1985.

4. Thomas A.A., Brennan C.W., DeAngelis L.M., et al. Emerging therapies for glioblastoma // JAMA Neurol. – 2014. – Vol. 71, No. 11. – P. 1437-1444.

5. Nieder C., Grosu A.L., Molls M. A comparison of treatment results for recurrent malignant gliomas // Cancer Treat. Rev. – 2000. – Vol. 26. – P. 397-409.

6. Pavarati A.J. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group – recursive partitioning analysis in the IMRT and temozolomide era // J. Neurooncol. – 2011. – Vol. 104, No. 1. – P. 339-349.

7. Malmstrom A., Gronberg B.H., Marosi C., et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial // Lancet Oncol. – 2012. – Vol. 13, No. 9. – P. 916-926.

8. Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches // Chin. J. Cancer. – 2014. – Vol. 33, No. 1. – P. 16-24.

9. Buckner A.J., Ballman K.V., Michalak J.C., et al. Phase III trial of Carmustine and Cisplatin compared with Carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: North Central Cancer Treatment Group 93-72-52 and Southwest Oncology Group 9503 Trials // Clin. Oncol. – 2006. – Vol. 24, No. 24. – P. 3871-3879.

10. Tanaka M., Ino Y., Nakagawa K, et al. High-dose conformal radiotherapy for supratentorial glioma: a historical comparison // Lancet Oncol. – 2005. – Vol. 6, No. 12. – P. 953-960.

11. Rusthoven C.G., Carlson J.A., Waxweiler T.V., et al. The impact of adjuvant radiation therapy for high-grade gliomas by histology in the United States population // Int. J. Radiat. Oncol. – 2014. – Vol. 90, No. 4. – P. 894-902.

12. Park K.J., Kano H., Iyer A., et al. Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case-control study // J. Neurooncol. – 2012. – Vol. 107. – P. 323-333.

13. Ткачев С.И., Барсуков Ю.А., Трофимова О.П. и соавт. Полирадиомодификация – перспективный вариант улучшения результатов комбинированного лечения больных злокачественными опухолями // Радиац. онкол. ядерн. мед. – 2011. – № 1. – С. 7-13.

14. Козин С.В. Динамическая модификация тканевой радиочувствительности при лучевой терапии опухолей // Вестник АМН СССР. – 1981. – № 7. – С. 76-83.

15. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology // Semin. Radiat. Oncol. – 2004. – Vol. 14. – P. 198-206.

16. Fowler J.F. Chemical modifiers of radiosensitivity theory and reality: review // Int. J. Radiat. Oncol. Biol. Phys. – 1985. – Vol. 11, No. 4. – Р. 665-674.

17. Гладилина И.А. Радиосенсибилизация в лучевой терапии злокачественных новообразований // ЭФ. Онкология, гематология и радиология. – 2011. – № 1. – C. 46-53.

18. Figge F.H., Wichterman R. Effect of hematoporphyrin on X-radiation sensitivity in Paramecium // Science. – 1955. – Vol. 122, No. 3167. – P. 468-469.

19. Chen D.Y. The use of hematoporphyrin derivative (HpD) as a sensitizer to radiotherapy in treatment of S180 in mice // Pract. Laser. – 1985. – Vol. 5. – P. 137.

20. Kostron H., Swartz M.R., Miller D.C., et al. The interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model // Cancer. – 1986. – Vol. 57. – P. 964-970.

21. Kulka U., Schaffer M., Siefert A. Photofrin as a radiosensitizer in an in vitro cell survival assay // Biochem. Biophys. Res. Commun. – 2003. – Vol. 311. – P. 98-103.

22. Luksiene Z., Juzenas P., Moan J. Radiosensitization of tumours by porphyrins // Cancer Lett. – 2006. – Vol. 235. – P. 40-47.

23. Schaffer M., Ertl-Wagner B., Schaffer P.M. Feasibility of photofrin II as a radiosensitizing agent in solid tumors – preliminary results // Onkologie. – 2006. – Vol. 29. – P. 514-519.

24. Viala J., Vanel D., Meingan P., et al. Phases IB and II multidose trial of gadolinium texaphyrin, a radiation sensitizer detectable at MR imaging: preliminary results in brain metastases // Radiology. – 1999. – Vol. 212. – P. 755-759.

25. Schaffer M., Schaffer P.M., Jori G. Radiation therapy combined with photofrin or 5-ALA: effect on Lewis sarcoma tumor lines implanted in mice. Preliminary results // Tumori. – 2002. – Vol. 88. – P. 407-410.

26. Schaffer M., Kulka U., Schaffer P. The role of radical derivatives of high reactivity in the radiosensitizing action of Photofrin II // J Porphyrins Phthalocyanines. – 2006. – Vol. 10. – P. 1398-1402.

27. Berg K., Bommer J.C., Moan J. Evaluation of sulfonated aluminum phthalocyanines for use in photochemo-therapy. A study on the relative efficiencies of photoinactivation // Photochem. Photobiol. – 1989. – Vol. 49, No. 5. – P. 587-594.

28. Узденский А.Б. Клеточно-молекулярные механизмы фото- динамической терапии. – Санкт-Петербург: Наука, 2010. – 327 с.

29. Schaffer M., Ertl-Wagner B., Schaffer P.M., et al. Porphyrins as radiosensitizing agents for solid neoplasms // Curr. Pharm. Des. – 2003. – Vol. 9, No. 25. – P. 2024-2035.

30. Yamamoto J., Ogura S., Shimajiri S., et al. 5-Aminolevulinic acid- induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo // Mol. Med. Rep. – 2015. – Vol. 11, No. 3. – P. 1813-1819.

31. Kitagawa T., Yamamoto J., Tanaka T., et al. 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: Quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro // Oncol. Rep. – 2015. – Vol. 33, No. 2. – P. 583-590.

32. Rutkovskienė L., Plėšnienė L., Sendiulienė D., et al. Sensitization of rat C6 glioma cells to ionizing radiation by porphyrins // Acta Medica Lituanica. – 2011. – Vol. 18, No. 2. – P. 56-62.

33. Benayoun L., Schaffer M., Bril R., et al. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy // Cancer Biol. Ther. – 2013. – Vol. 14, No. 1. – P. 64-74.

34. Bloznelytė-Plėnienė L., Stančius A. Gamadinaminis i.plitusių piktybinių navikų gydymas // Medicina. – 2002. – Vol. 38, No. 2. – P. 186-189.

35. Bloznelytė-Plėšnienė L., Rutkovskiene L. Radiosensitized treatment of primary or metastatical malignant brain tumors with hematoporphyrin derivative // Electron. Electric. Engineer. – 2006. – Vol. 4, No. 68. – P. 83-86.

36. Schaffer M., Hofstetter A., Ertl-Wagner B., et al. Treatment of astrocytoma grade III with Photofrin II as a radiosensitizer. A case report // Strahlenther Onkol. – 2013. – Vol. 189, No. 11. – P. 972-976.


Для цитирования:


Церковский Д.А. ФОТОСЕНСИБИЛИЗАТОРЫ КАК РАДИОСЕНСИБИЛИЗИРУЮЩИЕ АГЕНТЫ В ЭКСПЕРИМЕНТАЛЬНОЙ И КЛИНИЧЕСКОЙ НЕЙРООНКОЛОГИИ. Biomedical Photonics. 2017;6(2):27-33.

For citation:


Tzerkovsky D.A. PHOTOSENSITIZERS AS RADIOSENSITIZING AGENTS IN EXPERIMENTAL AND CLINICAL NEUROONCOLOGY. Biomedical Photonics. 2017;6(2):27-33. (In Russ.)

Просмотров: 274


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)