Preview

Biomedical Photonics

Advanced search

PHOTOSENSITIZERS AS RADIOSENSITIZING AGENTS IN EXPERIMENTAL AND CLINICAL NEUROONCOLOGY

Abstract

The article summarizes the main mechanisms  underlying the radiosensitizing effect of photosensitizers.

According to literature data many authors  consider the formation of reactive oxygen species to be the key element  in the implementation of the antitumor  effect of ionizing radiation, which transfers the photosensitizer molecule from the ground  state to the excited state. Their formation leads to the development of oxidative stress. The consequence of the realization of the oxidative stress induced by ionizing radiation is apoptosis of tumor cells.

The first photosensitizers, which radiosensitizing  activity was confirmed, were hematoprofyrin and photophryn II. A detailed  analysis of the results of experimental  studies of radiosensitizing effect of photosensitizers on cell culture and laboratory animals with transplanted lines of malignant gliomas (glioma C6, gliosarcoma 9L, glioblastoma U87-MG) was made.

The method of tumor radiosensitizing by administration of photosensitizers has been tested in patients with recurrent gliomas grade III-IV in a number of oncological centers. The obtained results show its good tolerability and antitumor  efficacy.

We have not found publications  on the study of the radiosensitizing effect of chlorine-based photosensitizers in the available literature, that makes following studies in this field relevant.

About the Author

D. A. Tzerkovsky
N.N. Alexandrov National Cancer Centre of Belarus
Belarus

Lesnoy



References

1. Omuro A., DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review, JAMA, 2013, Vol. 310, No. 17, pp. 1842-1850.

2. Carlsson S.K., Brothers S.P., Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme, EMBO Mol Med, 2014, Vol. 6, No. 11, pp. 1359-1370.

3. Patel M.A., Kim J.E., Ruzevick J., Li G., Lim M. The future of glioblastoma therapy: synergism of standard of care and immunotherapy, Cancers, 2014, Vol. 6, No. 4, pp. 1953-1985.

4. Thomas A.A., Brennan C.W., DeAngelis L.M., Omuro A.M. Emerging therapies for glioblastoma, JAMA Neurol, 2014, Vol. 71, No. 11, pp. 1437-1444.

5. Nieder C., Grosu A.L., Molls M. A comparison of treatment results for recurrent malignant gliomas, Cancer Treat. Rev., 2000, Vol. 26, pp. 397-409.

6. Pavarati A.J. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group – recursive partitioning analysis in the IMRT and temozolomide era, J. Neurooncol., 2011, Vol. 104, No. 1, pp. 339-349.

7. Malmstrom A., Gronberg B.H., Marosi C., Stupp R., Frappaz D., Schultz H., Abacioglu U., Tavelin B., Lhermitte B., Hegi M.E., Rosell J., Henriksson R. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial, Lancet Oncol., 2012, Vol. 13, No. 9, pp. 916-926.

8. Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches, Chin. J. Cancer, 2014, Vol. 33, No. 1, pp. 16-24.

9. Buckner A.J., Ballman K.V., Michalak J.C., Burton G.V., Cascino T.L., Schomberg P.J., Hawkins R.B., Scheithauer B.W., Sandler H.M., Marks R.S., O'Fallon J.R. Phase III trial of Carmustine and Cisplatin compared with Carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: North Central Cancer Treatment Group 93-72-52 and Southwest Oncology Group 9503 Trials, Clin. Oncol., 2006, Vol. 24, No. 24, pp. 3871-3879.

10. Tanaka M., Ino Y., Nakagawa K, Tago M., Todo T. High-dose conformal radiotherapy for supratentorial glioma: a historical comparison, Lancet Oncol., 2005, Vol. 6, No. 12, pp. 953-960.

11. Rusthoven C.G., Carlson J.A., Waxweiler T.V., Dally M.J., Barón A.E., Yeh N., Gaspar L.E., Liu A.K., Ney D.E., Damek D.M., Lillehei K.O., Kavanagh B.D. The impact of adjuvant radiation therapy for high-grade gliomas by histology in the United States population, Int. J. Radiat. Oncol., 2014, Vol. 90, No. 4, pp. 894-902.

12. Park K.J., Kano H., Iyer A., Liu X., Niranjan A., Flickinger J.C., Lieberman F.S., Lunsford L.D., Kondziolka D. Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case-control study, J. Neurooncol., 2012, Vol. 107, pp. 323-333.

13. Tkachev S.I., Barsukov Yu.A., Trofimova O.P., Nazarenko A.V., Tsaryuk V.F., Glebovskaya V.V., Medvedev S.V., Ivanov S.M. Polyradiomodification a promising option to improve results of combined treatment for patients with malignant tumors, Radiats. onkol. yadern. med., 2011, No. 1, pp. 7-13. (in Russian).

14. Kozin S.V. Dynamic modification of tissue radiosensitivity for cancer radiotherapy, Vestnik AMN SSSR, 1981, No. 7, pp. 76-83. (in Russian).

15. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology, Semin. Radiat. Oncol., 2004, Vol. 14, pp. 198-206.

16. Fowler J.F. Chemical modifiers of radiosensitivity theory and reality: review, Int. J. Radiat. Oncol. Biol. Phys., 1985, Vol. 11, No. 4, pp. 665-674.

17. Gladilina I.A. Radiosensitizing in radiotherapy of malignant neoplasms, EF. Onkologiya, gematologiya i radiologiya, 2011, No. 1, pp. 46-53. (in Russian).

18. Figge F.H., Wichterman R. Effect of hematoporphyrin on X-radiation sen- sitivity in Paramecium, Science, 1955, Vol. 122, No. 3167, pp. 468-469.

19. Chen D.Y. The use of hematoporphyrin derivative (HpD) as a sen- sitizer to radiotherapy in treatment of S180 in mice, Pract. Laser., 1985, Vol. 5, pp. 137.

20. Kostron H., Swartz M.R., Miller D.C., Martuza R.L. The interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model, Cancer, 1986, Vol. 57, pp. 964-970.

21. Kulka U., Schaffer M., Siefert A. Photofrin as a radiosensitizer in an in vitro cell survival assay, Biochem. Biophys. Res. Commun., 2003, Vol. 311, pp. 98-103.

22. Luksiene Z., Juzenas P., Moan J. Radiosensitization of tumours by porphyrins, Cancer Lett., 2006, Vol. 235, pp. 40-47.

23. Schaffer M., Ertl-Wagner B., Schaffer P.M. Feasibility of photofrin II as a radiosensitizing agent in solid tumors – preliminary results, Onkologie, 2006, Vol. 29, pp. 514-519.

24. Viala J., Vanel D., Meingan P., LArtigau E., Carde P., Renschler M. Phases IB and II multidose trial of gadolinium texaphyrin, a radia- tion sensitizer detectable at MR imaging: preliminary results in brain metastases, Radiology, 1999, Vol. 212, pp. 755-759.

25. Schaffer M., Schaffer P.M., Jori G. Radiation therapy combined with photofrin or 5-ALA: effect on Lewis sarcoma tumor lines implanted in mice. Preliminary results, Tumori, 2002, Vol. 88, pp. 407-410.

26. Schaffer M., Kulka U., Schaffer P. The role of radical derivatives of high reactivity in the radiosensitizing action of Photofrin II, J Por- phyrins Phthalocyanines, 2006, Vol. 10, pp. 1398-1402.

27. Berg K., Bommer J.C., Moan J. Evaluation of sulfonated aluminum phthalocyanines for use in photochemo-therapy. A study on the relative efficiencies of photoinactivation, Photochem. Photobiol., 1989, Vol. 49, No. 5, pp. 587-594.

28. Uzdenskii A.B. Kletochno-molekulyarnye mekhanizmy fotodinamicheskoi terapii [Cell and molecular mechanisms of photodynamic therapy]. Saint Petersburg, Nauka Publ., 2010. 327 p.

29. Schaffer M., Ertl-Wagner B., Schaffer P.M., Kulka U., Hofstetter A., Dühmke E., Jori G. Porphyrins as radiosensitizing agents for solid neoplasms, Curr. Pharm. Des., 2003, Vol. 9, No. 25, pp. 2024-2035.

30. Yamamoto J., Ogura S., Shimajiri S., Nakano Y., Akiba D., Kitagawa T., Ueta K.,TanakaT., Nishizawa S. 5-Aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo, Mol. Med. Rep., 2015, Vol. 11, No. 3, pp. 1813-1819.

31. Kitagawa T., Yamamoto J., Tanaka T., Nakano Y., Akiba D., Ueta K., Nishizawa S. 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) gener- ated by ionizing irradiation: Quantitative analyses and visualiza- tion of intracellular ROS production in glioma cells in vitro, Oncol. Rep., 2015, Vol. 33, No. 2, pp. 583-590.

32. Rutkovskienė L., Plėšnienė L., Sendiulienė D., Stačius A., Liutkeviciutė-Navickienė J. Sensitization of rat C6 glioma cells to ionizing radiation by porphyrins, Acta Medica Lituanica, 2011, Vol. 18, No. 2, pp. 56-62.

33. Benayoun L., Schaffer M., Bril R., Gingis-Velitski S., Segal E., Nevel- sky A., Satchi-Fainaro R., Shaked Y. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy, Cancer Biol. Ther., 2013, Vol. 14, No. 1, pp. 64-74.

34. Bloznelytė-Plėnienė L., Stančius A. Gamadinaminis i.plitusių piktybinių navikų gydymas, Medicina, 2002, Vol. 38, No. 2, pp. 186-189. (in Lithuanian).

35. Bloznelytė-Plėšnienė L., Rutkovskiene L. Radiosensitized treat- ment of primary or metastatical malignant brain tumors with hematoporphyrin derivative, Electron. Electric. Engineer, 2006, Vol. 4, No. 68, pp. 83-86.

36. Schaffer M., Hofstetter A., Ertl-Wagner B., Batash R., Pöschl J., Schaffer P.M. Treatment of astrocytoma grade III with Photo- frin II as a radiosensitizer. A case report, Strahlenther Onkol., 2013, Vol. 189, No. 11, pp. 972-976.


Review

For citations:


Tzerkovsky D.A. PHOTOSENSITIZERS AS RADIOSENSITIZING AGENTS IN EXPERIMENTAL AND CLINICAL NEUROONCOLOGY. Biomedical Photonics. 2017;6(2):27-33. (In Russ.)

Views: 1408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)