Preview

Biomedical Photonics

Advanced search

THE DEVELOPMENT OF NEUROSCAFFOLD FOR THE GLIOBLASTOMA THERAPY

https://doi.org/10.24931/2413-9432-2017-6-4-13-19

Abstract

Current paper presents the results of the system development for intracranial implantation aimed on therapy and prevention of brain gliomas relapse. The main property of the system, in prospective,  will be to direct the growth of glioma cells localized in the region  adjacent to the site of the removed tumor along the fi bers towards  the proximal part of the fiber-optic scaffold (neuroport). Such  approach will allow carrying out cells diagnostics by the  photoluminescence signal and provide subsequent destruction of  malignant cells by photodynamic action. Besides, this system could  be used for monitoring the processes occurring in the probed area in order to control the possible relapses. The localization of cells along  the fi ber structures covered with gelatin compound, which is the  source of amino acids during cultivation, was shown during the glioma cells growth dynamics study. Moreover, four different designs of intracranial scaffold models, serving as ports for diagnostic and therapeutic laser radiation delivery, were developed and  successfully tested in the framework of the research. The results  obtained on the rats brain with induced tumors (glioma C6) after  neuroport implantation demonstrate sufficiently intense fluorescence in the tumor bed after intravenous injection of the  nonmetallic sulfonated phthalocyanine based photosensitizer, and a  pronounced photodynamic effect leading to total destruction of the  tumor. In this way, the results of this study open the prospects of creating the neuroport with an internal fi ber structure that focuses the glioma cells growth.

About the Authors

Yu. S. Maklygina
General Physics Institute of the Russian Academy of Sciences
Russian Federation


A. S. Sharova
General Physics Institute of the Russian Academy of Sciences National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. V. Borodkin
General Physics Institute of the Russian Academy of Sciences
Russian Federation


G. M. Yusubalieva
V.P. Serbskij State Research Center of Forensic and Social Psychiatry, RUSA Ministry of Health
Russian Federation


A. V. Ryabova
General Physics Institute of the Russian Academy of Sciences National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


D. V. Pominova
General Physics Institute of the Russian Academy of Sciences
Russian Federation


E. A. Lukyanets
State Scientific Center Scientific Research Institute Organic Intermediates and Dyes
Russian Federation


S. A. Goryainov
Burdenko Neurosurgery Institute
Russian Federation


A. A. Potapov
Burdenko Neurosurgery Institute
Russian Federation


V. P. Chekhonin
V.P. Serbskij State Research Center of Forensic and Social Psychiatry, RUSA Ministry of Health
Russian Federation


I. A. Shcherbakov
General Physics Institute of the Russian Academy of Sciences
Russian Federation


V. B. Loshchenov
General Physics Institute of the Russian Academy of Sciences National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Khan L., Soliman H., Sahgal A., Perry J., Xu W., Tsao M.N. External beam radiation dose escalation for high grade glioma, Cochrane Database Syst Rev., 2016, Vol. 19, No. 8, CD011475.

2. Blumenthal D.T., Dvir A., Lossos A., Tzuk-Shina T., Lior T., Limon D., Yust-Katz S., Lokiec A., Ram Z., Ross J.S., Ali S.M., Yair R., Soussan- Gutman L., Bokstein F. Clinical utility and treatment outcome of comprehensive genomic profiling in high grade glioma patients, J Neurooncol., 2016, Vol. 130, No. 1., pp. 211-219.

3. Wang G., Fu X.L., Wang J.J., Guan R., Tang X.J. Novel strategies to discover effective drug targets in metabolic and immune therapy for glioblastoma, Curr Cancer Drug Targets., 2016, Vol. 17, No. 1, pp. 17-39.

4. Luciano R., Saracino R., Battafarano G., Perrotta A., Manco M., Muraca M., Del Fattore A., Rossi M. New perspectives in glioblastoma: Nanoparticles-based approaches, Curr Cancer Drug Targets., 2017, Vol. 17, No. 3, pp. 203-220.

5. Morrone F.B., Gehring M.P., Nicoletti N.F. Calcium Channels and Associated Receptors in Malignant Brain Tumor Therapy, Mol Pharmacol., 2016, Vol. 90, No. 3, pp. 403-409.

6. Ashby L.S., Smith K.A., Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review, World J Surg Oncol, 2016, Vol. 14, No. 1, p. 225.

7. Bregy A., Shah A.H., Diaz M.V., Pierce H.E., Ames P.L., Diaz D., Komotar R.J. The role of Gliadel wafers in the treatment of high-grade gliomas, Expert Rev Anticancer Ther., 2013, Vol. 13, No. 12, pp. 1453-1461.

8. Jain A., Betancur M., Patel G.D., Valmikinathan C.M., Mukhatyar V.J., Vakharia A., Pai S.B., Brahma B., MacDonald T.J., Bellamkonda R.V. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibers, Nat Mater., 2014, Vol. 13, No. 3, pp. 308-316.

9. Au S.H., Storey B.D., Moore J.C., Tang Q., Chen Y.L., Javaid S., Sarioglu A.F., Sullivan R., Madden M.W., O'Keefe R., Haber D.A., Maheswaran S., Langenau D.M., Stott S.L., Toner M. Clusters of circulating tumor cells traverse capillary-sized vessels, Proc Natl Acad Sci U S A., 2016, Vol. 113, No. 18, pp. 4947-4952.

10. Bellail A.C., Hunter S.B., Brat D.J., Tan C., Van Meir E.G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int. J. Biochem. Cell Biol., 2004, Vol. 36, No. 6, pp. 1046-1069.

11. Claes A., Idema A.J., Wesseling P. Diffuse glioma growth: a guerilla war, Acta Neuropathol., 2007, Vol. 114, No. 5, pp. 443-458.

12. Sutter M., Eggspuehler A., Grob D., Jeszenszky D., Benini A., Porchet F., Mueller A., Dvorak J. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors, Eur Spine J., 2007, Vol. 16, No. 2, pp. 197-208.

13. Chekhonin V.P., Baklaushev V.P., Yusubalieva G.M., Pavlov K.A., Ukhova O.V., Gurina O.I. Modeling and Immunohistochemical Analysis of C6 Glioma In Vivo, Bulletin of Experimental Biology and Medicine, 2007, Vol. 143, No. 4, pp. 501-509.

14. Potapov A.A., Nazarov V.V., Goryaynov S.A., Okhlopkov V.A., Shishkina L.V., Shurkhay V.A., Loschenov V.B., Saveleva T.A., Kuzmin S.G., Chumakova A.P. A case of brain abscess mimicking cystic brain tumor and showing intraoperative 5- aminolevulinic acid fluorescence: case report, J. Chirurgia, 2014, Vol. 27, No. 4, pp. 257-260.

15. Savelieva T.A., Kalyagina N.A., Kholodtsova M.N., Loschenov V.B., Goryainov S.A., Potapov A.A. Numerical modelling and in vivo analysis of fluorescent and laser light backscattered from glial brain tumors, Proc. SPIE 8230, 2012, 82300L.


Review

For citations:


Maklygina Yu.S., Sharova A.S., Borodkin A.V., Yusubalieva G.M., Ryabova A.V., Pominova D.V., Lukyanets E.A., Goryainov S.A., Potapov A.A., Chekhonin V.P., Shcherbakov I.A., Loshchenov V.B. THE DEVELOPMENT OF NEUROSCAFFOLD FOR THE GLIOBLASTOMA THERAPY. Biomedical Photonics. 2017;6(4):13-19. https://doi.org/10.24931/2413-9432-2017-6-4-13-19

Views: 1980


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)