PHOTODYNAMIC INACTIVATION OF PATHOGENIC BACTERIA IN BIOFILMS USING NEW SYNTHETIC BACTERIOCHLORIN DERIVATIVES
https://doi.org/10.24931/2413-9432-2017-6-4-27-36
Abstract
Bacteriochlorins as the antimicrobial photosensitizers have a promising future in the face of the unrelenting increase in antimicrobial resistance. The goal of this study was to investigate the infl uence of lipophilicity and number of positively charged substituents in these molecules on the photodynamic inactivation (PDI) of biofi lm bacteria in vitro. Testing how bacteriochlorin derivatives with different properties affect microbes will allow to determine the optimal ratio of these parameters within a single molecule. We have investigated 4 bacteriochlorin derivatives, all of which were synthesized in Organic Intermediates and Dyes Institute. These were: hydrophobic neutral meso-tetra(3-pyridyl) bacteriochlorin (ВС1), amphyphilic tetracationic meso-tetra(1- undecyl-3-pyridyl)bacteriochlorin tetrabromide (ВС2), hydrophilic tetracationic meso-tetra[1-(4'-bromobutyl)-3-pyridyl]bacteriochlorin tetrabromide (ВС3) and octacationic meso-tetra[1-(4'-pyridiniobutyl) -3-pyridyl]bacteriochlorin octabromide (ВС4) . The water-soluble cationic bacteriochlorin derivatives showed the most effective PDI of bacteria in biofi lms. While tetracationic BC3 caused total inactivation of S. aureus 15, octacationic BC4 was bactericidal for P. aeruginosa 32 to the same degree (>99.999%). Interestingly, increasing the number of cationic substituents from 4 to 8 in bacteriochlorin molecules enhances bactericidal action against gram-negative bacteria in biofi lms. The lack of charge-carrying groups and high degree of lipophilicity of PS have negative impact on PDI of biofi lm bacteria. Bacterial membrane damage as a result of PDI can be one of the causes of cell death.
About the Authors
I. G. TiganovaRussian Federation
E. A. Makarova
Russian Federation
G. A. Meerovich
Russian Federation
N. V. Alekseeva
Russian Federation
E. R. Tolordava
Russian Federation
Yu. S. Zhizhimova
Russian Federation
E. A. Lukyanets
Russian Federation
Yu. M. Romanova
Russian Federation
References
1. Malik Z., Ladan H., Nitzan Y. Photodynamic inactivation of Gramnegative bacteria: problems and possible solutions, J. Photochem. Photobiol., 1992, Vol. 14, pp. 262-266.
2. Simões C., Gomes M.C., Neves M.G.P.M.S., Cynha Â., Tomé J.P.C., Tomé A.C., Cavaleiro J.A.S., Almedia A., Faustino M.A.F. Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins – The charge number and charge distribution effects, Catalysis Today, 2016, Vol. 266, pp. 197-204.
3. Strakhovskaya M.G., Antonenko Yu.N., Pashkovskaya A.A., Kotova E.A., Kireev V., Zhukhovitskii V.G., Kuznetsova N.A., Yuzhakova O.A., Negrimovskii V.M., Rubin A.B. Electrostatic binding of substituted metallophthalocyanines to enterobacteria cells: role in photodynamic inactivation, Biokhimiya, 2009, Vol. 74, Is. 12, pp. 1603-1614. (in Russian)
4. Meerovich G.А., Tiganova I.G., Makarova E.A., Meerovich I.G., Romanova Ju.M., Tolordova E.R., Alekseeva N.V., Stepanova T.V., Koloskova Yu., Luk’anets E.A., Krivospitskaya N.V., Sipailo I.P., Baikova T.V., Lostchenov V.B., Gonchukov S.A. Photodynamic inactivation of bacteria and biofilms using cationic bacteriochlorins, J. of Physics: Conference Series, 2016, Vol. 691. doi: 10.1088/1742- 6596/691/1/012011
5. Usacheva M.N., Teichert M.C., Biel M.A. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms, Lasers Surg. Med., 2001, Vol. 29(2), pp. 165-173.
6. Li X., Guo H., Tian Q., Zheng G., Hu Y., Fu Y., Tan H. Effects of 5- aminolevulinic acid-mediated photodynamic therapy on antibioticresistant staphylococcal biofilm: an in vitro study, J.Surg.Res., 2013, Vol. 184, pp. 1013-1021.
7. Wang Y., Zhou Q., Wang Y., Ren J., Zhao H., Wu S., Yang J., Zhen J., Luo Y., Wang X., Gu Y. In vitro photodynamic inactivation effects of Ru(II) complexes on clinical methicillin-resistant Staphylococcus aureus planktonic and biofilm cultures, Photochem. Photobiol., 2015, Vol. 91, pp. 124-133.
8. Cieplik F., Späth A., Regensburger J., Gollmer A., Tabenski L., Hiller K.A., Bäumler W., Maisch T., Schmalz G. Photodynamic biofilm inactivation by SAPYR – an exclusive singlet oxygen photosensitizer, Free Radical Biology and Medicine, 2013, Vol. 65, pp. 477-487.
9. Kim H.-J., Lindsey J.S. De novo synthesis of stable tetrahydroporphyrinic heterocycles: bacteriochlorins and a tetrahydrocorrin, J Org. Chem., 2005, Vol. 70, pp. 5475-5486.
10. Krayer M., Ptaszek M., Kim H.J., Meneely K.R., Fan D., Secor K., Lindsey J.S. Expanded scope of synthetic bacteriochlorins via improved acid catalysis conditions and diverse dihydrodipyrrin-acetals, J Org. Chem., 2010, Vol. 75, pp. 1016-1039.
11. Mass O., Lindsey J.S. A trans-AB-bacteriochlorin building block, J. Org. Chem., 2011, Vol. 76, pp. 9478-9487.
12. Huang L., Huang Y.Y., Mroz P., Tegos G.P., Zhiyentayev T., Sharma S.K., Lu Z., Balasubramanian T., Krayer M., Ruzié C., Yang E., Kee H.L., Kirmaier C., Diers J.R., Bocian D.F., Holten D., Lindsey J.S., Hamblin M.R. Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers, Antimicrob. Agents Chemother., 2010, Vol. 54, pp. 3834-3841.
13. Schastak S., Gitter B., Handzel R., Hermann R., Wiedemann P. Improved photoinactivation of gram-negative and gram-positive methicillin-resistant bacterial strains using a new near-infrared absorbing meso-tetrahydroporphyrin: a comparative study with a chlorine e6 photosensitizer Photolon, Methods Find. Exp. Clin. Pharmacol., 2008, Vol. 30, pp. 129-133.
14. Schastak S., Ziganshyna S., Gitter B., Wiedemann P., Claudepierre T. Efficient photodynamic therapy against Gram-positive and Gramnegative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength, PLoS One, 2010, Vol. 5, e11674.
15. Lee C.F., Lee C.J., Chen C.T., Huang C.T. delta-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures, J Photochem Photobiol B, 2004, Vol. 75, pp. 21-25.
16. Street C.N., Gibbs A., Pedigo L., Andersen D., Loebel N.G. In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture, Photochemistry and Photobiology, 2009, Vol. 85, pp. 137-143.
17. Plotnikova E.A., Lukyanets E.A., Yakubovskaya R.I. Comparative evaluation of the light beam penetration depth into tumor tissue using chlorin and bacteriochlorin series photosensitizers, Biomedical Photonics, Sp. Is. Materialy V Vserossiiskoi konferentsii Fotodinamicheskaya terapiya i Fotodiagnostika, 2016, p. 12. (in Russian)
18. Biofilm infections, by ed. Bjarnsholt T. Heidelberg, Springer, 2011. 314 p.
19. Makarova E.A., Yakubovskaya R.I., Vorozhtsov G.N., Morozova N.B., Luk'yanets E.A., Lastovoi A.P., Plotnikova E.A. Fotosensibilizator dlya fotodinamicheskoi terapii [Photosensitizer for photodynamic therapy]. Patent RF, no 254995, 2013.
20. Dudkin S.V., Makarova E.A., Slivka L.K., Lukyanets E.A. Synthesis and properties of tetra- and octacationic meso-tetrakis(3-pyridyl)bacteriochlorin derivatives, J. Porphyrins Phthalocyanines, 2014, Vol. 18, pp. 107-114.
Review
For citations:
Tiganova I.G., Makarova E.A., Meerovich G.A., Alekseeva N.V., Tolordava E.R., Zhizhimova Yu.S., Lukyanets E.A., Romanova Yu.M. PHOTODYNAMIC INACTIVATION OF PATHOGENIC BACTERIA IN BIOFILMS USING NEW SYNTHETIC BACTERIOCHLORIN DERIVATIVES. Biomedical Photonics. 2017;6(4):27-36. (In Russ.) https://doi.org/10.24931/2413-9432-2017-6-4-27-36