VISUALIZATION OF Nd3+-DOPED LaF3 NANOPARTICLES FOR NEAR INFRARED BIOIMAGING VIA UPCONVERSION LUMINESCENCE AT MULTIPHOTON EXCITATION MICROSCOPY
https://doi.org/10.24931/2413-9432-2018-7-1-4-12
Abstract
Recent developments in the field of biophotonics facilitate the raise of interest to inorganic nanoparticles (NPs) doped with Nd3+ ions, because of their near-infrared (NIR) absorption. These NPs are interesting bioimaging probes for deep tissue visualization, while they can also act as local thermometers in biological tissues. Despite the good possibilities for visualization of NPs with Nd3+ ions in NIR spectral range, difficulties arise when studying the cellular uptake of these NPs using commercially available fluorescence microscopy systems, since the selection of suitable luminescence detectors is limited. However, Nd3+ ions are able to convert NIR radiation into visible light, showing upconversion properties. In this paper we found optimal parameters to excite upconversion luminescence of Nd3++:LaF NPs in living cells and to compare the distribution of the NPs inside the cell culture of human macrophages THP-1 obtained by two methods. Firstly, by detecting the upconversion luminescence of the NPs inVIS under NIR multiphoton excitation using laser scanning confocal microscopy and secondly, using transmission electron microscopy.
About the Authors
A. V. RyabovaRussian Federation
Moscow
K. Keevend
Switzerland
St. Gallen
E. Tsolaki
United Kingdom
London
S. Bertazzo
United Kingdom
London
D. V. Pominova
Russian Federation
Moscow
I. D. Romanishkin
Russian Federation
Moscow
P. V. Grachev
Russian Federation
Moscow
V. I. Makarov
Russian Federation
Moscow
I. A. Burmistrov
Russian Federation
Moscow
A. S. Vanetsev
Russian Federation
Moscow, Tartu
E. O. Orlovskaya
Russian Federation
Moscow
A. E. Baranchikov
Russian Federation
Moscow
M. Rähn
Estonia
Institute of Physics
I. Sildos
Estonia
Institute of Physics
V. Sammelselg
Estonia
Institute of Physics
V. B. Loschenov
Russian Federation
Moscow
Y. V. Orlovskii
Russian Federation
Moscow, Tartu
References
1. Escudero A., Carrillo-Carrión C., Zyuzin M.V., Parak W.J. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications, Top Curr Chem (Cham), 2016, Vol. 374(4), p. 48. Available at: https://doi.org/10.1007/s41061-016-0049-8
2. Ma D., Xu X., Hu M., Wang J., Zhang Z., Yang J., Meng L. Rare-earthbased nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion luminescence for multimodal imaging, Chem Asian J, 2016, Vol. 11(7), pp. 1050-1058. Available at: http://dx.doi.org/10.1002/asia.201501456
3. Li X., Wang R., Zhang F., Zhou L., Shen D., Yao C., Zhao D. Nd3+ Sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm, Sci. Rep., 2013, Vol. 3, p. 3536. Available at: http://dx.doi.org/10.1038/srep03536
4. Wang Z., Zhang P., Yuan Q., Xu X., Lei P., Liu X., Su Y., Dong L., Feng J., Zhang H. Nd³+-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation, Nanoscale, 2015, Vol. 7(42), pp. 17861-17870. Available at: http://dx.doi.org/10.1039/C5NR04889C
5. Zhong Y., Tian G., Gu Z., Yang Y., Gu L., Zhao Y., Ma Y., Yao J. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles, Adv. Mater., 2014, Vol. 26(18), pp. 2831-2837. Available at: http://dx.doi.org/10.1002/adma.201304903
6. Zhan Q., Wang B., Wen X., He S. Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing, Opt. Mater. Express, 2016, Vol. 6, pp. 1011-1023. Available at: https://doi.org/10.1364/OME.6.001011
7. Kushida T., Marcos H.M., Geusic J.E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet, Phys. Rev., 1968, Vol. 167, pp. 289-291. Available at: https://doi.org/10.1103/PhysRev.167.289
8. Xu B., Zhang X., Huang W., Yang Y., Ma Y., Gu Z., Zhai T., Zhao Y. Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application, J. Mater. Chem. B., 2016, Vol. 4, pp. 27762784. Available at: http://dx.doi.org/10.1039/C6TB00542J
9. Wang Y.F., Liu G.Y., Sun L.D., Xiao J.W., Zhou J.C., Yan C.H. Nd(3+)sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 2013, Vol. 7, pp. 7200-7206. doi:10.1021/nn402601d
10. Qin Q.-S., Zhang P.-Z., Sun L.-D., Shi S., Chen N.-X., Dong H., Zheng X.-Y., Li L.-M. and Yan C.-H. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging, Nanoscale, 2017, Vol. 9, pp. 4660-4664. Available at: http://dx.doi.org/10.1039/C7NR00606C
11. Rocha U., Hu J., Rodriguez E.M., Vanetsev A.S., Rähn M., Sammelselg V., Orlovskii Y.V., García Sole J., Jaque D., Ortgies D.H. Subtissue Imaging and Thermal Monitoring of Gold Nanorods through Joined Encapsulation with Nd-Doped Infrared-Emitting Nanoparticles, Small, 2016, Vol. 12, pp. 5394-5400. Available at: http://dx.doi.org/10.1002/smll.201600866
12. Pichaandi J., Boyer J.-C., Delaney K.R., van Veggel F.C.J.M. Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging, J. Phys. Chem. C., 2011, Vol. 115, pp. 19054-19064. doi:10.1021/jp206345j
13. Zhan Q., He S., Qian J., Cheng H., Cai F. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield, Theranostics, 2013, Vol. 3, pp. 306-316. doi:10.7150/thno.6007
14. Wu R., Zhan Q., Liu H., Wen X., Wang B., He S. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy, Opt. Express, 2015, Vol. 23, pp. 32401-32412. Available at: https://doi.org/10.1364/OE.23.032401
15. Wang B., Zhan Q., Zhao Y., Wu R., Liu J., He S. Visible-to-visible fourphoton ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals, Opt. Express, 2016, Vol. 24(2), pp. A302-A311. Available at: https://doi.org/10.1364/OE.24.00A302
16. Vanetsev A., Kaldvee K., Puust L., et al. Relation of crystallinton upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging, J. Phys. Chem. C., 2011, Vol. 115, pp. 19054-19064. doi:10.1021/jp206345j
17. Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Ryabova A.V., Ivanov V.K. Cerium fluoride nanoparticles protect cells against oxidative stress, Mater Sci. Eng. C Mater Biol. Appl., 2015, Vol. 50, pp. 151-159. Available at: https://doi.org/10.1016/j.msec.2015.01.094
18. Carnall W.T., Crosswhite Hannah, Crosswhite H.M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3. United States, 1978. doi:10.2172/6417825
19. Carnall W.T., Goodman G.L., Rajnak K., Rana R.S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3, Chem. Phys., 1989, Vol. 90, p. 3443. Available at: http://dx.doi.org/10.1063/1.455853
20. Pollnau M., Gamelin D.R., Luthi S.R., Gudel H.U., Hehlen M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B., 2000, Vol. 61, pp. 33373346. Available at: https://doi.org/10.1103/PhysRevB.61.3337
21. Jacinto C., Oliveira S.L., Catunda T., Andrade A.A., Myers J.D., Myers M.J. Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials, Opt. Express, 2005, Vol. 13, pp. 2040-2046. Available at: https://doi.org/10.1364/OPEX.13.002040
22. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles, Int. J. Nanomedicine, 2012, Vol. 7, pp. 5577-5591. Available at: https://doi.org/10.2147/IJN.S36111
23. Sojka B., Liskova A., Kuricova M., Banski M., Misiewicz J., Dusinska M., Horvathova M., IlavskaS., Szabova M., Rollerova E., Podhorodecki A., Tulinska J. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes, J. Nanopart. Res., 2017, Vol. 19, p. 68. Available at: https://doi.org/10.1007/s11051-017-3779-9
Review
For citations:
Ryabova A.V., Keevend K., Tsolaki E., Bertazzo S., Pominova D.V., Romanishkin I.D., Grachev P.V., Makarov V.I., Burmistrov I.A., Vanetsev A.S., Orlovskaya E.O., Baranchikov A.E., Rähn M., Sildos I., Sammelselg V., Loschenov V.B., Orlovskii Y.V. VISUALIZATION OF Nd3+-DOPED LaF3 NANOPARTICLES FOR NEAR INFRARED BIOIMAGING VIA UPCONVERSION LUMINESCENCE AT MULTIPHOTON EXCITATION MICROSCOPY. Biomedical Photonics. 2018;7(1):4-12. https://doi.org/10.24931/2413-9432-2018-7-1-4-12