Preview

Biomedical Photonics

Advanced search

VISUALIZATION OF Nd3+-DOPED LaF3 NANOPARTICLES FOR NEAR INFRARED BIOIMAGING VIA UPCONVERSION LUMINESCENCE AT MULTIPHOTON EXCITATION MICROSCOPY

https://doi.org/10.24931/2413-9432-2018-7-1-4-12

Abstract

Recent developments in the field of biophotonics facilitate the raise of interest to inorganic nanoparticles (NPs) doped with Nd3+ ions, because of their near-infrared (NIR) absorption. These NPs are interesting bioimaging probes for deep tissue visualization, while they can also act as local thermometers in biological tissues. Despite the good possibilities for visualization of NPs with Nd3+ ions in NIR spectral range, difficulties arise when studying the cellular uptake of these NPs using commercially available fluorescence microscopy systems, since the selection of suitable luminescence detectors is limited. However, Nd3+ ions are able to convert NIR radiation into visible light, showing upconversion properties. In this paper we found optimal parameters to excite upconversion luminescence of Nd3++:LaF NPs in living cells and to compare the distribution of the NPs inside the cell culture of human macrophages THP-1 obtained by two methods. Firstly, by detecting the upconversion luminescence of the NPs inVIS under NIR multiphoton excitation using laser scanning confocal microscopy and secondly, using transmission electron microscopy.

About the Authors

A. V. Ryabova
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


K. Keevend
Swiss Federal Laboratories for Materials Science and Technology (Empa)
Switzerland
St. Gallen


E. Tsolaki
University College London (UCL)
United Kingdom
London


S. Bertazzo
University College London (UCL)
United Kingdom
London


D. V. Pominova
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


I. D. Romanishkin
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


P. V. Grachev
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


V. I. Makarov
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


I. A. Burmistrov
Lomonosov Moscow State University
Russian Federation
Moscow


A. S. Vanetsev
General Physics Institute of the Russian Academy of Sciences; University of Tartu
Russian Federation
Moscow, Tartu


E. O. Orlovskaya
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


A. E. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry RAS
Russian Federation
Moscow


M. Rähn
University of Tartu
Estonia
Institute of Physics


I. Sildos
University of Tartu
Estonia
Institute of Physics


V. Sammelselg
University of Tartu
Estonia
Institute of Physics


V. B. Loschenov
General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


Y. V. Orlovskii
General Physics Institute of the Russian Academy of Sciences; University of Tartu
Russian Federation
MoscowTartu


References

1. Escudero A., Carrillo-Carrión C., Zyuzin M.V., Parak W.J. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications, Top Curr Chem (Cham), 2016, Vol. 374(4), p. 48. Available at: https://doi.org/10.1007/s41061-016-0049-8

2. Ma D., Xu X., Hu M., Wang J., Zhang Z., Yang J., Meng L. Rare-earthbased nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion luminescence for multimodal imaging, Chem Asian J, 2016, Vol. 11(7), pp. 1050-1058. Available at: http://dx.doi.org/10.1002/asia.201501456

3. Li X., Wang R., Zhang F., Zhou L., Shen D., Yao C., Zhao D. Nd3+ Sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm, Sci. Rep., 2013, Vol. 3, p. 3536. Available at: http://dx.doi.org/10.1038/srep03536

4. Wang Z., Zhang P., Yuan Q., Xu X., Lei P., Liu X., Su Y., Dong L., Feng J., Zhang H. Nd³+-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation, Nanoscale, 2015, Vol. 7(42), pp. 17861-17870. Available at: http://dx.doi.org/10.1039/C5NR04889C

5. Zhong Y., Tian G., Gu Z., Yang Y., Gu L., Zhao Y., Ma Y., Yao J. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles, Adv. Mater., 2014, Vol. 26(18), pp. 2831-2837. Available at: http://dx.doi.org/10.1002/adma.201304903

6. Zhan Q., Wang B., Wen X., He S. Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing, Opt. Mater. Express, 2016, Vol. 6, pp. 1011-1023. Available at: https://doi.org/10.1364/OME.6.001011

7. Kushida T., Marcos H.M., Geusic J.E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet, Phys. Rev., 1968, Vol. 167, pp. 289-291. Available at: https://doi.org/10.1103/PhysRev.167.289

8. Xu B., Zhang X., Huang W., Yang Y., Ma Y., Gu Z., Zhai T., Zhao Y. Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application, J. Mater. Chem. B., 2016, Vol. 4, pp. 27762784. Available at: http://dx.doi.org/10.1039/C6TB00542J

9. Wang Y.F., Liu G.Y., Sun L.D., Xiao J.W., Zhou J.C., Yan C.H. Nd(3+)sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 2013, Vol. 7, pp. 7200-7206. doi:10.1021/nn402601d

10. Qin Q.-S., Zhang P.-Z., Sun L.-D., Shi S., Chen N.-X., Dong H., Zheng X.-Y., Li L.-M. and Yan C.-H. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging, Nanoscale, 2017, Vol. 9, pp. 4660-4664. Available at: http://dx.doi.org/10.1039/C7NR00606C

11. Rocha U., Hu J., Rodriguez E.M., Vanetsev A.S., Rähn M., Sammelselg V., Orlovskii Y.V., García Sole J., Jaque D., Ortgies D.H. Subtissue Imaging and Thermal Monitoring of Gold Nanorods through Joined Encapsulation with Nd-Doped Infrared-Emitting Nanoparticles, Small, 2016, Vol. 12, pp. 5394-5400. Available at: http://dx.doi.org/10.1002/smll.201600866

12. Pichaandi J., Boyer J.-C., Delaney K.R., van Veggel F.C.J.M. Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging, J. Phys. Chem. C., 2011, Vol. 115, pp. 19054-19064. doi:10.1021/jp206345j

13. Zhan Q., He S., Qian J., Cheng H., Cai F. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield, Theranostics, 2013, Vol. 3, pp. 306-316. doi:10.7150/thno.6007

14. Wu R., Zhan Q., Liu H., Wen X., Wang B., He S. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy, Opt. Express, 2015, Vol. 23, pp. 32401-32412. Available at: https://doi.org/10.1364/OE.23.032401

15. Wang B., Zhan Q., Zhao Y., Wu R., Liu J., He S. Visible-to-visible fourphoton ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals, Opt. Express, 2016, Vol. 24(2), pp. A302-A311. Available at: https://doi.org/10.1364/OE.24.00A302

16. Vanetsev A., Kaldvee K., Puust L., et al. Relation of crystallinton upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging, J. Phys. Chem. C., 2011, Vol. 115, pp. 19054-19064. doi:10.1021/jp206345j

17. Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Ryabova A.V., Ivanov V.K. Cerium fluoride nanoparticles protect cells against oxidative stress, Mater Sci. Eng. C Mater Biol. Appl., 2015, Vol. 50, pp. 151-159. Available at: https://doi.org/10.1016/j.msec.2015.01.094

18. Carnall W.T., Crosswhite Hannah, Crosswhite H.M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3. United States, 1978. doi:10.2172/6417825

19. Carnall W.T., Goodman G.L., Rajnak K., Rana R.S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3, Chem. Phys., 1989, Vol. 90, p. 3443. Available at: http://dx.doi.org/10.1063/1.455853

20. Pollnau M., Gamelin D.R., Luthi S.R., Gudel H.U., Hehlen M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B., 2000, Vol. 61, pp. 33373346. Available at: https://doi.org/10.1103/PhysRevB.61.3337

21. Jacinto C., Oliveira S.L., Catunda T., Andrade A.A., Myers J.D., Myers M.J. Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials, Opt. Express, 2005, Vol. 13, pp. 2040-2046. Available at: https://doi.org/10.1364/OPEX.13.002040

22. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles, Int. J. Nanomedicine, 2012, Vol. 7, pp. 5577-5591. Available at: https://doi.org/10.2147/IJN.S36111

23. Sojka B., Liskova A., Kuricova M., Banski M., Misiewicz J., Dusinska M., Horvathova M., IlavskaS., Szabova M., Rollerova E., Podhorodecki A., Tulinska J. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes, J. Nanopart. Res., 2017, Vol. 19, p. 68. Available at: https://doi.org/10.1007/s11051-017-3779-9


Review

For citations:


Ryabova A.V., Keevend K., Tsolaki E., Bertazzo S., Pominova D.V., Romanishkin I.D., Grachev P.V., Makarov V.I., Burmistrov I.A., Vanetsev A.S., Orlovskaya E.O., Baranchikov A.E., Rähn M., Sildos I., Sammelselg V., Loschenov V.B., Orlovskii Y.V. VISUALIZATION OF Nd3+-DOPED LaF3 NANOPARTICLES FOR NEAR INFRARED BIOIMAGING VIA UPCONVERSION LUMINESCENCE AT MULTIPHOTON EXCITATION MICROSCOPY. Biomedical Photonics. 2018;7(1):4-12. https://doi.org/10.24931/2413-9432-2018-7-1-4-12

Views: 1385


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)