Preview

Biomedical Photonics

Расширенный поиск

Активация наночастиц фталоцианина алюминия для локальной флуоресцентной спектроскопии в стоматологии

https://doi.org/10.24931/2413-9432-2018-7-3-4-20

Полный текст:

Аннотация

Для выявления микротрещин эмали и очагов скопления патогенной микрофлоры, которые могут стать причиной развития кариеса, в качестве маркера используется фталоцианин алюминия (AlPc) в виде наночастиц. В коллоидном растворе наночастицы не обладают собственной флуоресценцией, в отличие от молекулярной формы. Для перевода частицы в молекулярную форму необходимо присутствие растворителя или специфического окружения (бактерии, макрофаги и др.). Поэтому гидрофобные наночастицы фталоцианина алюминия (nAlPc) могут выступать в качестве маркера для обнаружения скрытых очагов скопления патогенной микрофлоры во время проведения флуоресцентной диагностики. Для сокращения времени диагностики и увеличения эффективности в качестве дополнительных активаторов nAlPc могут быть использованы биологически совместимые поверхностно-активные вещества (ПАВ).

Для проведения локальной флуоресцентной спектроскопии микротрещин эмали и очагов скопления патогенной микрофлоры на поверхности эмали была приготовлена модельная смесь, содержащая ПАВ, вспомогательные компоненты и коллоида nAlPc в концентрации 10 мг/л.

Исследования по взаимодействию модельной смеси с nAlPc и протеланом с эмалью зубов ex vivo показали перспективность использования этого ПАВ для дополнительной активации наночастиц, что позволяет проводить локальную флуоресцентную спектроскопию поверхности эмали зубов через 3 мин после нанесения. Также статистическая обработка результатов показала эффективность использования модельной смеси для локальной флуоресцентной спектроскопии поверхности эмали для выявления микротрещин эмали и очагов скопления патогенной микрофлоры, которая может привести к развитию кариесогенного процесса.

Об авторах

Ю. О. Золотарева
Национальный исследовательский ядерный университет МИФИ
Россия
Москва


Д. С. Фаррахова
Национальный исследовательский ядерный университет МИФИ; Институт общей физики им. А.М. Прохорова Российской Академии Наук; ООО «Дентоспек»
Россия
Москва


Е. Н. Куприянова
АУЗ «Стоматологическая поликлиника №11 ДЗМ»
Россия
Москва


В. Б. Лощенов
Национальный исследовательский ядерный университет МИФИ; Институт общей физики им. А.М. Прохорова Российской Академии Наук; ООО «Дентоспек»
Россия
Москва


Список литературы

1. Thomas S.S., Mohanty S., Jayanthi J.L., et al. Clinical trial for detection of dental caries using laser-induced fluorescence ratio reference standard // J. Biomed. Opt. – 2013. – Vol. 15, No. 2. – P. 1–8.

2. Gonchukov S.A., Sukhinina A.A., Bakhmutov D.N., et al. Periodontitis diagnostics using resonance Raman spectroscopy on saliva // Laser Phys. Lett. – 2013. – Vol. 10, No. 7. – 075610.

3. Gonchukov S., Sukhinina A., Bakhmutov D., Minaeva S. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics // Laser Phys. Lett. – 2012. – Vol. 9, No. 1. – P. 73–77.

4. Ramakrishnaiah R., Rehman G., Basavarajappa S., et al. Applications of Raman Spectroscopy in Dentistry: Analysis of Tooth Structure // Appl. Spectrosc. Rev. – 2014. – Vol. 50, No. 4. – P. 332–350.

5. Tsuda H., Arends J. Raman Spectroscopy in Dental Research: A Short Review of Recent Studies // Adv. Dent. Res. – 1997. – Vol. 11, No. 4. – P. 539–547.

6. Buchwald T., Okulus Z., Szybowicz M. Raman spectroscopy as a tool of early dental caries detection–new insights // J. Raman Spectrosc. – 2017. – Vol. 48, No. 8. – P. 1094–1102.

7. Hsieh Y.-S., Ho Y.C., Lee S.Y., et al. Dental Optical Coherence Tomography // Sensors (Basel). – 2013. – Vol. 13, No. 7. – P. 8928–8949.

8. Chen Q.G., Zhu H.H., Xu Y., et al. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis // Laser Phys. – 2015. – Vol. 25, No. 8. – P. 1–9.

9. Buchalla W., Lennon A.M., Attin T. Fluorescence spectroscopy of dental calculus // J. Periodontal Res. – 2004. – Vol. 39, No. 5. – P. 327–332.

10. Bakhmutov D., Gonchukov S., Sukhinina A. Fluorescence spectroscopy of dental calculus // Laser Phys. Lett. – 2010. – Vol. 7, No. 5. – P. 384–387.

11. Bakhmutov D.N., Gonchukov S.A., Kharchenko O., et al. Early Dental Caries Detection by Fluorescence Spectroscopy // Laser Phys. Lett. – 2004. – Vol. 1, No. 11. – P. 565–569.

12. Bakhmutov D.N., Gonchukov S.A., Kharchenko O. Early caries naked-eyed examination // Laser Phys. Lett. – 2008. – Vol. 5, No. 5. – P. 375–378.

13. Borisova E.G., Uzunov T.T., Avramov L.A. Early Differentiation between Caries and Tooth Demineralization Using Laser- Induced Autofluorescence Spectroscopy // Lasers Surg. Med. – 2004. – Vol. 34, No. 3. – P. 249–253.

14. Drakaki E., Makropoulou M., Khabbaz M., Serafetinideset A.A. Reflectance, scattering and laser induced fluorescence for the detection of dental caries // Proc. SPIE. – 2003. – 5141_348.

15. Drakaki E.A., Makropoulou M.I., Khabbaz M., Serafetinides A.A. Laser Induced Fluorescence in diagnosis of dental caries // Proc. SPIE. – 2003. – Vol. 5149. – P. 45–52.

16. Sinyaeva M.L., Mamedov A.A., Vasilchenko S.Y., et al. Fluorescence Diagnostics in Dentistry // Laser Phys. – 2004. – Vol. 14, No. 8. – P. 1132–1140.

17. Schoenly J.E., Seka W., Featherstone J.D., Rechmann P. Near-UV laser treatment of extrinsic dental enamel stains // Lasers Surg. Med. – 2012. – Vol. 44, No. 4. – P. 339–345.

18. Синяева М.Л., Васильченко С.Ю., Волкова А.И. и др. Использование наночастиц фталоцианина алюминия для детектирования микроповреждений эмали зубов // Российские нанотехнологии. – 2007. – Т. 2, № 11–12. – С. 58–63.

19. Steiner R., Breymayer J., Rueck A., et al. Crystalline organic nanoparticles for diagnosis and PDT // Proc. SPIE. – 2015. – Vol. 9308. – P. 1–7.

20. Breymayer J., Rück A., Ryabova A.V., et al. Fluorescence investigation of the detachment of aluminum phthalocyanine molecules from aluminum phthalocyanine nanoparticles in monocytes/macrophages and skin cells and their localization in monocytes/macrophages // Photodiagnosis Photodyn. Ther. – 2014. – Vol. 11, No. 3. – P. 380–390.

21. Vasilchenko S.Y. Volkova A.I., Ryabova A.V., et al. Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology // J. Biophotonics. – 2010. – Vol. 3, No. 5–6. – P. 336–346.

22. Kuznetsova J.O., Makarov V.I. Applicationofnanophotosensitizers (aluminum phthalocyanine nanoparticles) for early diagnosis and prevention of inflammatory diseases // J. Phys. Conf. Ser. – 2016. – Vol. 737, No. 1. – P. 1–3.

23. Kuznetsova J.O., Farrakhova D.S., Yassin M.G. Aluminum phthalocyanine nanoparticles as a contrast agent for the detection of tooth enamel microcracks // Photon Lasers Med. – 2016. – Vol. 5, No. 4. – P. 267–322.

24. Быстров Ф.Г., Макаров В.И., Поминова Д.В. и др. Исследование кинетики затухания фотолюминесценции молекулярных нанокристаллов фталоцианина алюминия при взаимодействии с иммунокомпетентными клетками // Biomed.Photonics. – 2016. – Т. 5, № 1. – P. 3–8.

25. Sinyaeva M.L., Panchenko V.Y., Sabotinov N.V., et al. Optimization of parodontium tissue irradiation method for fluorescent diagnostic (FD) and photodynamic therapy (PDT) // Proc. SPIE. – 2004. – Vol. 5449. – P. 462–465.

26. Васильченко С.Ю., Волкова А.И., Коровин С.Б. и др. Исследо- вание флюоресцентных свойств наночастиц фталоцианина алюминия в микроповреждениях эмали зуба // Рос. биотер. журн. – 2006. – Т. 5, № 2. – С. 77–80.

27. Dobson J., Wilson M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser // Arch. Oral Biol. – 1992. – Vol. 37, No. 11. – P. 883–887.

28. Lacey J.A., Phillips D. The photobleaching of disulfonated aluminium phthalocyanine in microbial systems // Photochem. Photobiol. Sci. – 2002. – Vol. 1, No. 2. – P. 120–125.

29. Lacey J.A., Phillips D. Fluorescence lifetime measurements of disulfonated aluminium phthalocyanine in the presence of microbial cells // Photochem. Photobiol. Sci. 2002. – Vol. 1, No. 6. – P. 378–383.

30. Wilson M., Dobson J., Sarkar S. Sensitization of periodontopathogenic bacteria to killing by light from a low- power laser // Oral Microbiol. lmmunology. – 1993. – No. 8. – P. 182–187.

31. Carrera E.T., Dias H.B., Corbi S.C.T., et al. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review // Laser Phys. – 2016. – Vol. 26, No. 12. doi: 10.1088/1054– 660X/26/12/123001

32. Yin R., Hamblin M.R. Antimicrobial Photosensitizers: Drug Discovery Under the Spotlight // Curr. Med. Chem. – 2015. – Vol. 22, No. 18. – P. 2159–2185.

33. Carmello J.C., Alves F., Ribeiro A., et al. In vivo photodynamic inactivation of Candida albicans using chloro-aluminum phthalocyanine // Oral Dis. – 2016. – Vol. 22, No. 5. – P. 415–422.

34. Ribeiro A.P., Andrade M.C., Bagnato V.S., et al. Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions // Lasers Med. Sci. – 2015. – Vol. 30, No. 2. – P. 549–559.

35. Ragelle H., Crauste-Manciet S., Seguin J., et al. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice // Int. J. Pharm. – 2012. – Vol. 427, No. 2. – P. 452–459.

36. Zhang H., Yao M., Morrison R.A., Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats // Arch Pharm Res. – 2015. – Vol. 26, No. 9. – P. 768–772.

37. Natarajan J., Baskaran M., Humtsoe L.C., et al. Enhanced brain targetingefficacyofOlanzapinethroughsolidlipidnanoparticles// Artif. Cells. Nanomedicine. Biotechnol. – 2016. – Vol. 45, No. 2. – P. 364–371.

38. Salaguer J.-L. Surfactants Types and Uses. – Venezuela: Laboratorio FIRP, 2002. – 49 p.

39. Холмберг К., Йёнссон Б., Кронберг Б., Линдман Б. Поверхностно-активные вещества и полимеры в водных растворах.– Москва: БИНОМ. Лаборатория знаний, 2013. – 513 c.

40. Саввин С.Б. Поверхностно-активные вещества. – М.: Наука, 1991. – 251 с.

41. Asem H., El-Fattah A.A., Nafee N., et al. Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer // Photodiagnosis Photodyn. Ther. – 2016. – Vol. 13. – P. 48–57.

42. Loschenov V., Konov V., Prokhorov A. Photodynamic therapy and fluorescence diagnostics // Laser Phys. – 2000. – Vol. 10, No. 6. – P. 1188–1207.

43. Иванов В.Л., Ляшкевич С.Ю. Влияние поверхностно-активных веществ на цепную реакцию фотозамещения галогена сульфогруппой в галогенгидроксинафталинах // Химия высоких энергий. – 2013. – T. 47, No. 4. – C. 293–297.

44. Silva E.P.O., Franchi L.P., Tedescoa A.C. Chloro-aluminium phthalocyanine loaded in ultradeformable liposome for photobiologystudiesonhumanglioblastoma// RSCAdv.– 2016.– Vol. 83. – P. 1–10.

45. Muehlmann L.A., Ma B.C., Longo J.P., et al. Aluminum- phthalocyanine chloride associated to poly(methyl vinyl ether- co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy // Int. J. Nanomedicine. – 2014. – Vol. 9. – P. 1199–1213.

46. Cath T.Y., Adams D., Childress A.E. Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater // J. Memb. Sci. – 2005. – Vol. 257, No. 1–2. – P. 111–119.


Для цитирования:


Золотарева Ю.О., Фаррахова Д.С., Куприянова Е.Н., Лощенов В.Б. Активация наночастиц фталоцианина алюминия для локальной флуоресцентной спектроскопии в стоматологии. Biomedical Photonics. 2018;7(3):4-20. https://doi.org/10.24931/2413-9432-2018-7-3-4-20

For citation:


Zolotareva J.O., Farrakhova D.S., Kupriyanova E.N., Loschenov V.B. Aluminum phthalocyanine nanoparticles activation for local fluorescence spectroscopy in dentistry. Biomedical Photonics. 2018;7(3):4-20. (In Russ.) https://doi.org/10.24931/2413-9432-2018-7-3-4-20

Просмотров: 203


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)