Preview

Biomedical Photonics

Advanced search

Review of selective accumudation of photosensitizers with different chemical structure in tumor tissue

Abstract

The review of available theories explaining mechanisms of photosensitizer selective accumulation in tumor tissue is represented in the article. Variants associated with both targeted delivery of compounds with different chemical structure to tumor and low elimination rate of photosensitizers in the tumor are described. Details of tumor cell up-take of photosensitizer bounded with lipoproteins due to increased expression of low solidity lipoproteins receptors comparing with normal cells; mechanisms of photosensitizer accumulation in tumor tissue due to phagocytosis by macrophages localized in this area; mechanisms of binding of porphyrin-based photosensitizer by collagen fibers, production of which is increased in tumor cells, and other mechanisms are reviewed. Perspectives of practical application of knowledge about mechanisms of selective accumulation for induced increase in selectiveness of photosensitizer accumulation in tumor through targeted delivery of agent to pathological tissues are shown. Analysis of world trends in the search of transport systems for photosensitizers is performed.

 

About the Authors

E. A. Machinskaya
Research Institute of Organic Intermediates and Dyes, Moscow
Russian Federation


V. I. Ivanova-Radkevich
Research Institute of Organic Intermediates and Dyes, Moscow
Russian Federation


References

1. Лукьянец Е.А. Новые фотосенсибилизаторы для фотодинамической терапии // Российский химический журнал. – 1998. – Т. XLII, №5. – С. 9–16.

2. Juzeniene A. and Moan J. The history of PDT in Norway/ Part one: Identification of basic mechanisms of general PDT // Photodiag. Photodynam. Ther. – 2007. – Vol. 4. – P. 3–11.

3. Castano A.P. et al. Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization // Photodiag. Photodynam. Ther. – 2004. – Vol. 1. – P. 279–293.

4. Moghissi K. and Dixon K. Photodynamic therapy in the management of malignant pleural mesothelioma: a review // Photodiagnosis and photodynamic therapy. – 2005. – Vol. 2. – P. 135–147.

5. Moan J. and Peng Q. An outline of the history of PDT // Photodynamic Therapy. Comprehensive series in Photochem. Photobiol. Sci. Ed. T. Patrice. The Royal Society of Chemistry, London. – 2003. – P. 3–17.

6. Jori G. and Reddy E. The role of lipoproteins in the delivery of tumor-targeting photosensitezers // Int. J. Biochem. – 1993. – Vol. 25. – P. 1369–75.

7. Allison R.R., Sibata C.H., Downie G.H. and Cuenca R.E. A clinical review of PDT for cutaneous malignancies (review) // Photodiag. Photodynam. Ther. – 2006. – Vol. 3. – P. 214-226.

8. Соболев А.С., Розенкранц А.А., Гилязова Д.Г. Подходы к направленной внутриклеточной доставке фотосенсибилизаторов для увеличения их эффективности и придания клеточной специфичности // Биофизика. – 2004. – Т. 49, вып. 2. – С. 351–379.

9. Figge F.H.J., Weiland G.S., Manganiello O.J. Cancer detection and therapy. Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins // Proc. Soc. Exp. Biol. Med. – 1948. – Vol. 68. – P. 640–641.

10. Detty M.R., Gibson S.L., Wagner S.J. Current clinical and preclinical photosensitizers for use in photodynamic therapy // J. Med. Chem. – 2004. – Vol. 47. – P. 3897–3915.

11. Huang Z., Xu H., Meyers A.D. et al. Photodynamic therapy for treatment of solid tumors – potential and technical challenges // Technol. Cancer Res. Treat. – 2008. – Vol. 7, № 4. – P. 309–320.

12. Jones H.J., Vernon D.I. and Brown S.B. Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics / Br. J. Cancer. – 2003. – Vol. 89. – P. 398–404.

13. Moan J. and Berg K. The photodegradation of porphyrins in cells can be used to estimate thephotosensitizer pharmacokinetics, biodistribution, tumor localization and models of tumor destruction lifetime of singlet oxygen // Photochem. Photobiol. – 1991. – Vol. 53. – P. 549–530.

14. Kessel D. Adventures in photodynamic therapy: 1976–2008 // J. Porphyrins Phthalocyanines. – 2008. – Vol. 12, № 8. – P. 877–880.

15. Lou P.-J., Jäger H.R., Jones L., Theodossy T., Bown S.G. and Hopper C. Interstitial Nowis D., Makowski M., Stokłosa T. et al. Direct tumor damage mechanisms of photodynamic therapy // Acta Biochimica Polonica. – 2005. – Vol. 52, №2. – P. 339–352.

16. Lukyanets E.A. Phthalocyanines as photosensitizers in the photodynamic therapy of cancer // Journal of porphyrins and phthalocyanines. – 1999. – Vol 3, IS 6-7. – P. 424–432.

17. Josefsen L.B. and Boyle R.W. Photodynamic therapy and the development of metal-based photosensitisers // Metal-Based Drugs. – 2008. – Vol. 2008. – 24 p.

18. Xu D.Y. Research and development of photodynamic therapy photosensitizers in China // Photodiag. Photodynam. Ther. – 2007. – 4. – P. 13–25.

19. Zheng G., Li H., Zhang M., Lund-Katz S., Chance B, Glickson J.D., Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target specific photosensizer // Bioconj. Chem. – 2002. – 13. – P. 392–396.

20. Pass H. Photodynamic therapy in oncology: mechanisms and clinical use // J. Nat. Cancer. Inst. – 1993. – Vol. 85, № 6. – P. 443–456.

21. Leupold D. and Freyer W. Proposal of modified mechanisms for photodynamic therapy // J. Photochem. and Photobiol. – 1992. – Vol. 12, № 3. – P. 311–313.

22. Zheng H. A Review of progress in clinical photodynamic therapy // Technology in cancer research and treatment. – 2005. – Vol. 4, № 3. – P. 283–293.

23. Olenick N.L., Agarwal M.L., He Jin et al. Metabolic signals activated by photodynamic therapy (PDT) // Photogem. and Photobiol. – 1994. – Vol. 59. – P. 67.

24. Nowis D., Makowski M., Stokłosa T. et al. Direct tumor damage mechanisms of photodynamic therapy // Acta Biochimica Polonica. – 2005. – Vol. 52, № 2. – P. 339–352.

25. Pottier R., Kennedy J.C. / J. Photochem. Photobiol. B: Biol. – 1999. – V. 8. – P. 1–16.

26. Sulbha Sharma, Anjana Jajoo, Alok Dube / 5-Aminolevulinic acid-induced protoporphyrin-IX accumulatin and associated phototoxicity in macrophages and oral cancer cell lines // Journal of photochemistry and photobiology. – 2007. – 88. – P. 156–162.

27. Solban N., Rizvi I. and Hasan T. Targeted photodynamic therapy // Lasers in surgery and medicine. – 2006. – 38. – P. 522–531.

28. Wiedmann M.W. and Caca K. General Principles of Photodynamic Therapy (PDT) and Gastrointestinal // Current Pharmaceutical Biotechnology. – 2004. – 5. – P. 397–408.

29. Dougherty T.J., Potter W.R., Weishaupt K.R. / Porphyrin localization and treatment of tumors // Alan R. Liss. – 1984. – P. 301–314.

30. Fujita M., Lee B.-S., Khazenzon N.M. et al. Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-L-malic acid) // J. Control Release. – 2007. – Vol. 122, №3. – P. 356–363.

31. Hofman J.-W., Carstens M.G., van Zeeland F. et al. Photocytotoxicity of mTHPC (Temoporfin) loaded polymeric micelles mediated by lipase catalyzed degradation // Pharmaceutical Research. – 2008. – Vol. 25, № 9. – P. 2065–2073.

32. Меерович И.Г., Оборотова Н.А. Применение липосом в фотохимиотерапии: 1. липосомы в ФДТ // Российский биотерапевтический журнал. – 2003. – Т. 2, №4. – С. 3–8.

33. Кубасова И.Ю., Вакуловская Е.Г, Ермакова К.В., Смирнова З.С. Флюоресцентная диагностика и фотодинамическая терапия при лечении злокачественных опухолей голов- ного мозга // Российский биотерапевтический журнал. – 2006. – Т. 5, №4. – С. 54–63.


Review

For citations:


Machinskaya E.A., Ivanova-Radkevich V.I. Review of selective accumudation of photosensitizers with different chemical structure in tumor tissue. Photodynamic therapy and photodyagnosis. 2013;2(4):28-32. (In Russ.)

Views: 1369


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)