Applications of multispectral autofluorescence imaging of malignant tumors
Abstract
The applications of multispectral autofluorescence imaging of malignant tumor was shown in in vitro and in vivo experiments. Using ТС-1 mouse tumor model it was demonstrated that the location of tumor formation can be clearly identified as early as 2 days after injection of tumor cells. Among observed effects the new one is an unusually active angiogenesis at early stage of tumor formation accompanied by atypical tortuous vessels with growth rate up to 3 mm/day. Two-wave excitation simultaneous laser with excitation on wavelength of 390 nm and 635 nm is shown to be promising for autofluorescence diagnosis along with single-wave excitation which is conventionally performed in the violet-blue region of the spectrum. This mode of excitation allows detecting the increased level of protoporphyrin IX even at early stage of carcinogenesis. The fluorescence due to active synthesis of protoporphyrin IX was shown to correlate with density of vessels. Increase of this fluorescence is observed also for aseptic inflammation but it has diffuse pattern which allows differentiating it from local fluorescence image at the site of tumor formation. The possibility of successful achievement of high-quality image using multispectral imaging and also optimization of registration settings were demonstrated in the experiment. The study of surgical specimen showed capabilities of imaging and measurement of autofluorescence in tumor tissue. The obtained results are intended to help in the development of endoscopic methods of imaging and devices for diagnosis of early tumors.
About the Authors
G. V. PapayanRussian Federation
N. N. Petrishchev
Russian Federation
S. V. Kim
Russian Federation
Hyung Ho Kim
Russian Federation
V. B. Berezin
Russian Federation
Uk Kang
Russian Federation
References
1. Pierce M.C., Javier D.J., Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis of cancer, Int. J. Cancer, 2008, № 123 (9), pp. 1979-90.
2. Dadvani S.A., Kharnas S.S., Chilingaridi K.E, Loshchenov V.B., Vetshev S.P. Lazernaya autoflyuorestsentnaya spektroskopiya – novyi metod ekspress-diagnostiki v khirurgii (obzor) (Laser autofluorescence spectroscopy – a new method of instant diagnosis in surgery (Review)), Khirurgiya, 1999, № 10, pp. 75–79.
3. Richards-Kortum R., Sevick-Muraca E. Quantitative optical spectroscopy for tissue diagnosis, Annual Review of Physical Chemistry, 1996, № 47(1), pp. 555–606.
4. Loshchenov V.B., Stratonnikov A.A., Volkova A.I., Prokhorov A.M. Portativnaya spektroskopicheskaya sistema dlya flyuorestsentnoi diagnostiki opukholei i kontrolya za fotodinamicheskoi terapiei (Handcarried spectroscopic system for fluorescence diagnosis of tumors and monitoring the photodynamic therapy), Rossiiskii khimicheskii zhurnal, 1998, № 2, XLII, p. 50.
5. Palcic, B., Lam S., Hung J., MacAulay C. Detection and localization of early lung cancer by imaging techniques, Chest, 1991, № 99 (3), pp. 742–3.
6. Papayan G.V., Kang Uk. Flyuorestsentnaya endoskopicheskaya videosistema (Fluorescence endoscopic video system), Opticheskii zhurnal, 2006, №. 10, pp. 94–9.
7. Sokolov V.V., Filonenko E.V., Telegina L.V., Bulgakova N.N., Smirnov V.V. Kombinatsiya flyuorestsentnogo izobrazheniya i lokal'noi spektrofotometrii pri flyuorestsentnoi diagnostike rannego raka gortani i bronkhov (Combination of fluorescent image with local spectrophotometry for fluorescence diagnosis of early laryngeal and bronchial cancer), Kvant. Elektronika, 2002, № 32 (11), pp. 963–9.
8. Benavides, J. M., Chang S., Park S. et al. Multispectral digital colposcope for in vivo detection of cervical cancer, Optics Express, 2003, No. 11, pp. 1223–36.
9. Kang Uk, Papayan G.V., Be S.D. et al. Flyuorestsentnyi videodermatoskop (Fluorescence video dermatoscope), Opticheskii zhurnal, 2008, No. 1, pp. 32–8.
10. Kang Uk, Papayan G.V., Berezin B.B., Bae Soo-Jin, Kim S.V., Petrishchev N.N. Mul'tispektral'nyi flyuorestsentnyi organoskop – pribor dlya prizhiznennykh issledovanii laboratornykh zhivotnykh i ikh organov (Multispectral flurescent organoscope – the device for in vivo study of laboratory animals and its organs), Opticheskii zhurnal, 2011, № 9, pp. 82–90.
11. Papayan G.V., Petrishchev N.N., Panchenko A.V, Kang Uk, Kim S.V., Berezin V.B. Mul'tispektral'naya avtoflyuorestsentnaya diagnostika raka sheiki matki na eksperimental'nykh modelyakh (Mulruspectral autofluorescence diagnosis of cervical cancer on experimental models), Sbornik nauchnykh trudov pod red. N.N. Petrishcheva, SPb.: Lan', 2011, pp. 273–81.
12. Petrishchev N.N., Kim S.V., Berezin V. B., Papayan G.V. Avtoflyuorestsentnaya vizualizatsiya sosudov mikrotsirkulyatornogo rusla (Autofluorescence imaging of microvasculature), Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya, 2010, № 4, pp. 75–7.
13. Policard. A. Etudes sur les aspects offerts par des tumeurs experimentales examinees a la lumiere de Woods C. R., Soc. BioL., 1924, № 91, pp. 1423–5.
14. Goryainov S.A., Potapov A.A, Loshchenov V.B., Savel'eva T.A. Flyuorestsentnaya navigatsiya i lazernaya spektroskopiya v khirurgii gliom golovnogo mozga (Fluorescence guidance and laser spectroscopy in surgery of brain gliomas), M.: MediaSfera, 2014, pp. 1–152.
15. Sokolov V.V., Rusakov I.G, Bulgakova N.N., Ul'yanov R.V., Teplov A.A. Flyuorestsentnye metody v diagnostike poverkhnostnogo raka mochevogo puzyrya (Fluorescent methods in diagnosis of superficial bladder cancer), Sibirskii onkologicheskii zhurnal, 2007, № 4 (24), pp. 117–26.
16. Kang Uk, Papayan G.V. Apparatus for photodynamic therapy and photodetection. Patent US8382812.
17. Valde´s P.A., Kim A., Brantsch M. et al. δ-aminolevulinic acid–induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy, Neuro-Oncology, 2011, № 13 (8), pp. 846–56.
18. Papayan G.V., Barskii I.Ya., Titov V.V., Safiulina S.S., Shchedrunov V.V., Lebedev O.E., Grukhie Yu.A., Gushch V.V. Mikroflyuorimetr dlya meditsinskikh issledovanii (Microfluorimetr for medical studies), Optiko-mekhanicheskaya promyshlennost', 1982, No. 7, pp. 34–7.
19. Alfano, R. R., D. B. Tata, J. Cordero, P. et al. Laser induced fluorescence spectroscopy from native cancerous and normal tissue, IEEE J. Quant. Electron., 1984, № 20, pp. 1507–11.
20. Anderson-Angels S., Ankerts J., Brun A. et al. Tissue diagnostics using laser-induced fluorescence, Ber. Bunsenges. Phys. Chem., 1989, № 93, pp. 335–42.
21. Andersson-Engels S., Klintederg C., Svanberg K., Svanberg S. In vivo fluorescence imaging for tissue diagnostics, Phys. Med. Biol., 1997, Vol. 42, pp. 815–24.
22. Leonhard M. New Incoherent Autofluorescence/Fluorescence System for Early Detection of Lung Cancer, Diagnostic and Therapeutic Endoscopy, 1999, Vol. 5, pp. 71–5.
23. Marshetta Zh., Dekamp F. Kol'poskopiya. Metod i diagnostika, per. s frants., (Method and diagnosis. Translated from French), M.: MEDpress-inform, 2014, pp. 1–200.
24. Lisovskii V.A., Shchedrunov V.V., Barskii I.Ya., Papayan G.V., Samoilov V.O., Gushch V.V., Grukhin Yu.A., Shulenin A.N., Solov'ev V.N. Lyuminestsentnyi analiz v gastroenterologii (Luminescence analysis in gastroenterology), L.: Nauka, 1984, pp. 1–234.
Review
For citations:
Papayan G.V., Petrishchev N.N., Kim S.V., Kim H., Berezin V.B., Kang U. Applications of multispectral autofluorescence imaging of malignant tumors. Photodynamic therapy and photodyagnosis. 2014;3(4):3-12. (In Russ.)