Application of biophantomes to evaluate the thermal effects of laser radiation with wavelengths of 970 nm and 1560 nm under different exposure modes
https://doi.org/10.24931/2413-9432-2022-11-2-12-22
Abstract
Laser interstitial hyperthermia is an actively developing direction in intracerebral tumor surgery. The paper presents thermal effects in polyacrylamide biophantoms with bovine albumin and citrated blood under laser irradiation at 970 nm and 1560 nm. For laser irradiation, a surgical two-wave apparatus manufactured by IRE Polis was used. The phantom was irradiated through a quartz optical fiber 400 µm in diameter with an end exit. The result of irradiation of the phantom was its coagulation zone, which was visualized with a FLUM-LL fluorescent organoscope. Thermometry was carried out with a FLIRONE PRO for IOS thermal imager and a T-8 digital thermograph based on a laptop with thermal sensors placed in a phantom. The use of irradiation with a power of not more than 2 W in the coagulation mode, with a total energy dose of up to 120 J, made it possible to achieve a smooth rise in temperature to 88.0 °C. The dimensions of the coagulation zone under irradiation with a wave of 1560 nm were always larger than under irradiation with a wave of 970 nm, although the difference was not statistically significant (p=0,41). Thus, the average coagulation spot area for 970 nm radiation was 43.2 (39.3 – 47.1) mm2, and for 1560 nm – 99.4 (56.5-141.3) mm2. With total irradiation with two waves, the coagulation zone was larger if the radiation power of 1560 nm prevailed. When irradiated with a wave of 970 nm, the coagulation zone partially propagates posteriorly from the tip of the optical fiber, and 1560 nm coagulates the phantom anteriorly. The results obtained are of practical importance for laser hyperthermia of intracerebral tumors.
About the Authors
O. V. OstreikoRussian Federation
Saint-Petersburg
M. A. Galkin
Russian Federation
Saint-Petersburg
G. V. Papayan
Russian Federation
Saint-Petersburg
T. G. Grishacheva
Russian Federation
Saint-Petersburg
N. N. Petrishchev
Russian Federation
Saint-Petersburg
References
1. Mohammadi A., Bianchi L., Asadi S., Saccomandi P. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature // Sensors (Basel). – 2021. – Vol. 21(12). – P. 4236. doi: 10.3390/s21124236
2. Ahmed M., Brace C.L., Fred T Lee Jr. F.T., Goldberg S.N. Principles of and advances in percutaneous ablation // Radiology. – 2011. – Vol. 258(2). – P. 351-69. doi: 10.1148/radiol.10081634
3. Franzini A., Moosa S., Servello D., Small I., DiMeco F., Xu Z., Elias W.J., Franzini A., Prada F. Ablative brain surgery: an overview // Int. J. Hyperth. – 2019. – Vol. 36. – P. 64–80. doi:10.1080/02656736.2019.1616833
4. Geoghegan R., Ter Haar G., Nightingale K., Marks L., Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review // Med. Phys. – 2022. – Vol. 49(2). – P. 769-791. doi: 10.1002/mp.15439
5. Chen C., Lee I., Tatsui C., Elder T., Sloan A.E. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review // J. of Neuro-Oncology. – 2021. – Vol. 151. – P. 429–442. doi: 10.1007/s11060-020-03652-z
6. Lagman C., Chung L.K., Pelargos P.E., Ung N., Bui T.T., Lee S.J., Voth B.L., Yang I. Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies // J. Clin. Neurosci. – 2017. – Vol. 36. – P. 20-26. doi: 10.1016/j.jocn.2016.10.019
7. Острейко О.В., Можаев С.В. Способ лечения глиальных опухолей головного мозга супратенториальной локализации // Патент РФ на изобретение №2533032 от 16.09.2014.
8. Eranki A., Mikhaila A.S., Negussiea A.H., Prateek S.K., Wooda B.J., Partanen A. Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications // International Journal of Hyperthermia. – 2019. – Vol. 36(1). – P. 518-529. doi: 10.1080/02656736.2019.1605458
9. Negussie A.H., Partanen A., Mikhail A.S., Xu S., Abi-Jaoudeh N., Maruvada S., Wood B.J. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation // Int. J. Hyperthermia. – 2016. – Vol. 32(3). – P. 239-43. doi: 10.3109/02656736.2016.1145745
10. Dabbagh A., Jeet Abdullah B.J., Abu Kasim N.H., Ramasindarum C. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application // Int. J. Hyperthermia. – 2014. – Vol. 30(1). – P. 66-74. doi: 10.3109/02656736.2013.854930
11. Bazrafshan B., Hubner F., Farshid P., Larson M.C., Vogel V., Mantele W., Vogl T.J. A liver-mimicking MRI phantom for thermal ablation experiments // Med. Phys. – 2011. – Vol. 38. – P. 2674–84. doi: 10.1118/1.3570577
12. Davidson S.R.H., Sherar M.D. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material // Int. J. Hyperthermia. – 2003. – Vol. 19(5). – P. 551-62. doi: 10.1080/02656730310001607995
13. Ningrum E.O., Purwanto A., Rosita G.C., Bagus A. The Properties of Thermosensitive Zwitterionic Sulfobetaine NIPAM-co-DMAAPS Polymer and the Hydrogels: The Effects of Monomer Concentration on the Transition Temperature and Its Correlation with the Adsorption Behavior // Indones. J. Chem. – 2020. – Vol. 20 (2). – P. 324-335. doi: 10.22146/ijc.41499
14. Vogel A., Venugopoplan V. Mechanisms of Pulsed Laser Ablation of Biological Tissues // Chem. Rev. – 2003. – Vol. 103. – P. 577−644. doi: 10.1021/cr030683b
15. Minton J.A., Iravani A., Yousefi A. Improving the homogeneity of tissue-mimicking cryogel phantoms for medical imaging // Med. Phys. – 2012. – Vol. 39(11). – P. 6796-807. doi: 10.1118/1.4757617
16. Guntur S.R., Choi M.J. An improved tissue-mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions with high-intensity focused ultrasound // Ultrasound in med. and biol. – 2014. – Vol. 40(11). – P. 2680-2691. doi: 10.1016/j.ultrasmedbio.2014.06.010
17. Welch A.J., Gemert M.J.C. Optical-thermal response of laser- irradiation tissue. // Springer. – 2011. – 947 p. doi:10.1007/978-90-481-8831-4
18. Kang U.K., Папаян Г.В., Березин И.Б., Jin Bae-Soo, Ким С.В., Петрищев Н.Н. Мультиспектральные флуоресцентные орга- носкопы для прижизненных исследований лабораторных животных и их органов // Оптический журнал. –2011. – Vol. 78(9). – P. 82-90.
19. Korganbayev S., Orrico A., Bianchi L., De Landro M., Wolf A., Dostovalov A., Saccomandi P. Closed-Loop Temperature Control Based on Fiber Bragg Grating Sensors for Laser Ablation of Hepatic Tissue // Sensors 2020. – Vol. 20(22). – P. 6496. doi.org/10.3390/s20226496
20. Manns F., Milne P.J, Gonzalez-Cirre X., Denham, D.B, Parel J., Robinson D.S. In situ temperature measurements with thermocouple probes during laser Interstitial thermotherapy (LITT): quantification and correction of a measurement artifact // Lasers Surg. Med. – 1998. – Vol. 23(2). – P. 94–103. doi: 10.1002/(sici)1096-9101(1998)23:2<94::aid- lsm7>3.0.co;2-q
Review
For citations:
Ostreiko O.V., Galkin M.A., Papayan G.V., Grishacheva T.G., Petrishchev N.N. Application of biophantomes to evaluate the thermal effects of laser radiation with wavelengths of 970 nm and 1560 nm under different exposure modes. Biomedical Photonics. 2022;11(2):12-22. https://doi.org/10.24931/2413-9432-2022-11-2-12-22