Study of acute toxicity of monocationic chlorin e6 derivative, a perspective photosensitizer for antimicrobial and antitumor photodynamic therapy
https://doi.org/10.24931/2413-9432-2022-11-2-23-32
Abstract
In this experimental work the acute toxicity of a chemically modified derivative of the natural pigment chlorophyll a called monocationic chlorin e6, which is a promising photosensitizer (PS) for antimicrobial and antitumor photodynamic therapy, was studied using white rats. The advantages of the PS under investigation are an intense absorption in the long-wavelength region of the visible spectrum, a sufficiently high quantum yield of singlet oxygen generation, pronounced amphiphilic properties along with an appropriate solubility in water, and a high level of photocytotoxic- ity in relation to both malignant HeLa cells and antibiotic-resistant hospital strains of E. сoli bacteria., P. aerugenosa and others. It has been shown that the value of LD50 of the considered PS can be calculated as the value of 100 mg/kg. In the reproduced experimental model of acute toxicity, pathomorphological changes in the vital organs of laboratory animals indicate a pronounced vasopathic effect of the drug with the development of cerebral edema and respiratory distress syndrome, which have become the main signs of thanatogenesis.
About the Authors
N. Yu. ZhidomorovRussian Federation
Ivanovo
O. A. Nazarenko
Russian Federation
Ivanovo
V. I. Demidov
Russian Federation
Ivanovo
A. V. Kustov
Russian Federation
Ivanovo
N. V. Kukushkina
Russian Federation
Ivanovo
O. I. Koifman
Russian Federation
Ivanovo
A. K. Gagua
Russian Federation
Moscow
I. K. Tomilova
Russian Federation
Ivanovo
D. B. Berezin
Russian Federation
Ivanovo
References
1. Bonnett R. Chemical aspects of photodynamic therapy. Amsterdam: Gordon Breach Sci. Publ, 2000, рр. 305.
2. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B.C., Golab J. Photodynamic therapy of cancer: an update. CA Cancer J. Clin, 2011, Vol. 61(4), рр. 250-281. doi: 10.3322/caac.20114
3. Otvagin V.F., Kuzmina N.S., Krylova L.V., Volovetsky A.B., Nyuchev A.V., Gavryushin A.E., Meshkov I.N., Gorbunova Y.G., Romanenko Y.V., Koifman O.I., Balalaeva I.V., Fedorov A.Y. Water-soluble chlorin/arylaminoquinozoline conjugate for photodynamic and targeted therapy. Med. Chem, 2019, Vol. 62(24), рр. 11182-11193. doi: 10.1021/acs.jmedchem.9b01294
4. Van Straten D., Mashayekhi V., De Bruijn H.S., Oliveira S., Robinson D.J. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers, 2017, Vol. 9(19), рр. 1-54. doi: 10.3390/cancers9020019
5. Krammer B., Malik Z., Pottier R., Stepp H. Basic principles. In: Photodynamic therapy with ALA. A clinical handbook / Ed. by Pottier R., Krammer B., Stepp, R. Baumgartner H. Cambridge: Royal Society Chem. Publ, 2006, рр. 15-78.
6. Tsyb A.F., Kaplan M.A., Romanko Yu.S., Popuchiev V.V. Clinical aspects of photodynamic therapy. Kaluga: Publishing house of scientific lit, 2009, pр. 204.
7. Filonenko E.V., Serova L.G. Photodynamic therapy in clinical practice. Biomedical Photonics, 2016. Vol. 5(2), рр. 26-37.
8. Filonenko E.V. Clinical implementation and scientific development of photodynamic therapy in Russia in 20102020. Biomedical Photonics, 2021, Vol. 10(4), pp. 4-22. doi: 10.24931/2413-9432-2021-9-4-4-22
9. Liu Y., Qin R., Zaat S.A.J., Breukink E., Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Translat. Res, 2015, Vol. 1(3), рр. 140-167.
10. Hamblin M. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr. Opin. Microbiol, 2016, Vol. 33, рр. 67-73.
11. Kustov A.V., Berezin D.B., Strelnikov A.I., Lapochkina N.P. Antitumor and antimicrobial photodynamic therapy: mechanisms, targets, clinical and laboratory studies: guidelines / edited by A.K. Gagua. Moscow: Largo, 2020, p. 108.
12. Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., et al. Macroheterocyclic compounds – a key building block in new functional materials and molecular devices. Macroheterocycles, 2020, Vol. 13(4), рр. 311-467. doi: 10.60 60/mhc200814k
13. Kustov A.V., Privalov O.A., Strelnikov A.I., Koifman O.I., Lubimtsev A.V., Morshnev Ph.K., Moryganova T.M., Kustova T.V., Berezin D.B. Transurethral resection of non-muscle invasive bladder tumors combined with fluorescence diagnosis and photodynamic therapy with chlorin e6-type photosensitizers. J. Clin. Med, 2022, Vol. 11, рр. 233. doi: 10.3390/jcm11010233
14. Caterino M., D'Aria F., Kustov A.V., Belykh D.V., Khudyaeva I.S., Starseva O.M., Berezin D.B., Pylina Y. I., Usacheva T. R., Amato J., Giancola C. Selective binding of a bioactive porphyrin-based photosensitizer to the G-quadruplex from the KRAS oncogene promoter. Intern. J. Biol. Macromolecules, 2020, Vol. 145, рр. 244-251. doi: 10.1016/j.ijbiomac.2019.12.152
15. Dabrowski J. M. Reactive oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Adv. Inorg. Chem, 2017, Vol. 70, рр. 343-394. doi: 10.1016/ bs.adioch.2017.03.002
16. Maisch T. Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J. Photochem. Photo-biol. B: Biol, 2015, Vol. 150, рр. 2-10. doi: /10.1016/j.jphotobiol.2015.05.010
17. Kobayashi N. Spectroscopically and/or structurally intriguing phthalocyanines and related compounds. Part 1. Monomeric systems. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol, 2019, Vol. 62, рр. 4-46. doi: 10.6060/ivkkt.20196206.5913_1
18. Kustov A.V., Smirnova N.L., Berezin M.B. Standard enthalpies and heat capacities of ethyl acetate and deuteroporphyrin dimethylester solution in N,N-dimethylformamide at 298– 318 K. Thermochim. Acta, 2011, Vol. 521. рр. 224-226. doi: 10.1016/j.tca.2011.02.020
19. Kustov A.V., Smirnova N.L., Berezin D. B., Berezin M.B. Thermodynamics of solution of protoand mezoporphyrins in N,Ndimethylformamide. J. Chem. Thermodyn, 2015, Vol. 89, рр. 123-126. doi: 10.1016/j.jct.2015.05.016
20. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Blood porphyrns in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: The energetics of solvation, solute-cosolvent interactions and model calculations. J. Chem. Thermodyn, 2015, Vol. 83, рр. 104-109. doi: 10.1016/j.jct.2014.12.013
21. Trukhacheva T.V., Shlyakhtin S.V., Isakov G.A. Photolon is a new tool for photodynamic therapy. – Minsk: RUE "Belmedpreparaty". 2009. – p. 64.
22. Yakavets I., Millard M., Zorin V., Lassalle H.-P., Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J. Contr. Release, 2019, Vol. 304, рр. 268-287. doi: 10.1016/j.jconrel.2019.05.035
23. Huang L., Dai T., Hamblin M.L. Antimicrobial photodynamic inactivation and photodynamic therapy for infections. In: Photodynamic therapy. Methods and protocols / Ed. by Ch.J. New York: Gomer Springer Science+Business Media, 2010, рр. 155-174.
24. Berezin D.B., Karimov D.R., Venediktov E.A., Kustov A.V., Makarov V.V. The synthesis and singlet oxygen generation study of 13(1)-N-piperazinyl chlorin e6-15(2),17(3)-dimethyl ester. Macroheterocycles, 2015, Vol. 8(4), рр. 384-388. doi: 10.6060/mhc151088b
25. Kustov A.V., Belykh D.V., Startseva O.M., Kruchin S.O., Venediktov E.A., Berezin D.B. New photosensitizers developed on a methylpheophorbide a platform for photodynamic therapy: synthesis, singlet oxygen generation and modeling of passive membrane transport. Pharm. Anal. Acta, 2016, Vol. 7(5), рр. 480-484. doi: 10.4172/2153-2435.1000480.
26. Venediktov E.A., Tulikova E.Yu., Rozhkova E.P., Belykh D.V., Khudyaeva I.S., Berezin D.B. Synthesis, spectral-luminescent and photochemical properties of a tricationic derivative of chloride e6 with trimethylammonium groups. Macroheterocycles, 2017, Vol. 10(3). – pp. 295-300. doi: 10.6060/mhc170404v
27. Kustov A.V., Belykh D.V., Smirnova N.L., Venediktov E.A., Kudayarova T.V., Kruchin S.O., Khudyaeva I.S., D Berezin D.B. Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy. Dyes Pigm, 2018, Vol. 149, рр. 553-559. doi: 10.1016/j.dyepig.2017.09.073
28. Kustov A.V., Kustova T.V., Belykh D.V., Khudyaeva I.S., Berezin D.B. Synthesis and investigation of novel chlorin sensitizers containing the myristic acid residue for antimicrobial photodynamic therapy, Dyes Pigm, 2020, Vol. 173, рр. 107948. doi: 10.1016/j.dyepig.2019.107948
29. Kustov A.V., Belykh D.V., Smirnova N.L., Khudyaeva I.S., Berezin D.B. Partition of methylpheophorbide a, dioxidine and their conjugate in the 1-octanol/phosphate saline buffer biphasic system. J. Chem. Thermodyn, 2017, Vol. 115, рр. 302306. doi: 10.1016/j.jct.2017.07.031
30. Berezin D.B., Kustov A.V., Krestyaninov M.A., Batov D.V., Kukushkina N.V., Shukhto O.V. The behavior of monocationic chlorin in water and aqueous solutions of non-ionic surfactant Tween 80 and potassium iodide. J. Mol. Liq, 2019, Vol. 283, рр. 532-536. doi: 10.1016/j.molliq.2019.03.091
31. Kustov A.V., Krestyaninov M.A., Kruchin S.O., Shukhto O.V., Kustova T.V., Belykh D.V., Khudyaeva I.S., Koifman M.O., Razgovorov P.B., Berezin D.B. Interaction of cationic chlorin photosensitizers with non-ionic surfactant Tween 80. Mend. Commun, 2021, Vol. 31(1), рр. 65-67. doi: 10.1016/j.mencom.2021.01.019
32. Shukhto O.V., Khudyaeva I.S., Belykh D.V., Berezin D.B. Aggregation of hydrophobic chlorines with fragments of antimicrobial drugs in aqueous solutions of ethanol and Twin 80. Izvestiya VUZov. Chemistry and Chemical technology, 2021, Vol. 64(11), pp. 86-96. doi: 10.6060/ivkkt.20216411.6500
33. Kustov A.V., Garasko E.V., Belykh D.V., Khudyaeva I.S., Startseva O.M., Makarov V.V., Strelnikov A.I., Berezin D.B. Photosensitizers of the chlorin series for antimicrobial photodynamic therapy. Successes of modern natural science, 2016, Vol.12(2), pp. 263-268.
34. Berezin D.B., Makarov V.V., Znoyko S.A., Mayzlish V.E., Kustov A.V. Aggregation water soluble octaanionic phthalocyanines behavior and their photoinactivation antimicrobial effect in vitro. Mend. Commun, 2020, Vol. 30(5), рр. 621-623. doi: 10.1016/j.mencom.2020.09.023
35. Pylina Ya.I., Khudyaeva I.S., Startseva O.M., Shadrin D.M., Shevchenko O.G., Velegzhaninov I.O., Kukushkina N.V., Berezin D.B., Belykh D.V. Dark and photoinduced cytotoxicity of cationic derivatives of chlorin e6 with different numbers of charged groups. Macroheterocycles, 2021, Vol. 14(4). doi: 10.6060/210944b
36. Gushchina O.I., Larkina E.A., Mironov A.F. Synthesis of cationic derivatives of chloride e6. Macroheterocycles, 2014, Vol. 7(4), pp. 414-416. doi: 10.6060/mhc140931g
37. Karimov D.R., Makarov V.V., Kruchin S.O., Berezin D.B., Smirnova N.L., Berezin M.B., Zheltova E.I., Strelnikov A.I., Kustov A.V. Optimization of chlorophyll isolation conditions from dioecious nettle (Urtica dioica L.) and spirulina (Spirulina platensis). Chemistry grows. raw materials, 2014, Vol. 17(4), pp. 189-196. doi: 10.14258/jcprm.201404310
38. Arzamassev E.V., Guskova T.A., Berezovskaya I.V., Lyubimov B.I., Lieberman S.S., Verstakova O.L. Methodological guidelines for the study of the general toxic effect of pharmacological agents: A guide to the experimental (preclinical) study of new pharmacological agents. Edited by R.U. Habriev. M.: Medicine, 2005, pp. 41-54.
Review
For citations:
Zhidomorov N.Yu., Nazarenko O.A., Demidov V.I., Kustov A.V., Kukushkina N.V., Koifman O.I., Gagua A.K., Tomilova I.K., Berezin D.B. Study of acute toxicity of monocationic chlorin e6 derivative, a perspective photosensitizer for antimicrobial and antitumor photodynamic therapy. Biomedical Photonics. 2022;11(2):23-32. https://doi.org/10.24931/2413-9432-2022-11-2-23-32