Эффективность применения лазера с длиной волны 650 нм для ускорения заживления ран после удаления зуба
https://doi.org/10.24931/2413-9432-2024-13-1-4-15
Аннотация
Пocлe yдaлeния зy6a мoгyт вoзникнyтъ ocлoжнeния, cвязaнныe c пoвpeждeниeм ткaнeй, oкpyжaющиx yдaлeнный зy6, чтo мoжeт пpивecти к cepъeзным пpo6лeмaм, тaким кaк вocпaлeниe и инфeкция. Пpoцecc зaживлeния paны включaeт фaзы вocпaлeния, пpoлифepaции и peмoдeлиpoвaния. Фoтo6иoмoдyляция — этo фopмa тepaпии, кoтopaя иcпoлъзyeт взaимoдeйcтвиe иcтoчникa cвeтa c ткaнъю. Этo взaимoдeйcтвиe мoжeт cпoco6cтвoвaтъ выpa6oткe ATФ, чтo впocлeдcтвии зaпycкaeт цeпнyю peaкцию, пpивoдящyю к o6paзoвaнию нoвыx кpoвeнocныx cocyдoв и yвeличeнию кoличecтвa фи6po6лacтoв. B нaшeм иccлeдoвaнии мы иcпoлъзoвaли лaзep c излyчeниeм в кpacнoй o6лacти cпeктpв (мoщнocтъ излyчeния 3,32 ± 0,01 мBт, cвeтoвaя дoзa 3,5 Дж). B xoдe иccлeдoвaния oцeнивaли влияниe тepaпии нa ypoвeнъ интepлeйкинa 1β (IL-1β), пpocтaглaндинa E2 (PGE2), 6eтa-дeфeнcинa чeлoвeкa 2 (HBD2) и дecнeвoй индeкc (GI). Иccлeдoвaния пoдтвepдили знaчитeлънoe влиячниe иccлeдyeмoй тepaпии нa пpoцecc paнoзaживлeния. Пo peзyлътaтaм иccлeдoвaний тaкжe нa6людaли cнижeниe знaчeний IL-1β, PGE2, HBD2 и GI. Этo yкaзывaeт нa тo, чтo мecтныe иммyнныe клeтки, включaя peзидeнтныe мaкpoфaги, aктивиpyютcя пpoвocпaлитeлъными мeдиaтopaми, выcвo6oждaeмыми в oтвeт нa тpaвмy, и игpaют вaжнyю poлъ в ycкopeнии зaживлeния paн.
Ключевые слова
Об авторах
S. D. AstutiИндонезия
Surabaya
R. Nashichah
Индонезия
Surabaya
P. Widiyanti
Индонезия
Surabaya
E. M. Setiawatie
Индонезия
Surabaya
M. S. Amir
Индонезия
Surabaya
A. Apsari
Индонезия
Surabaya
. Widyastuti
Индонезия
Surabaya
E. Hermanto
Индонезия
Surabaya
Y. Susilo
Индонезия
Surabaya
A. K. Yaqubi
Индонезия
Surabaya
D.Z. I. Nurdin
Индонезия
Surabaya
N. Anuar
Малайзия
Kuala Lumpur
Malaysia
Список литературы
1. Ministry of Health R.I. Results of basic health research in 2018. Indonesian Ministry of Health, 2018, vol. 53(9), pp. 1689-1699.
2. Chapple I.L. et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 2018, pp. S74-S84. https://doi.org/10.1002/JPER.17-0719
3. Deliverska E.G. et al. Complications after extraction of impacted third molars-literature review. Journal of IMAB–Annual Proceeding Scientific Papers, 2016, vol. 22(3), pp. 1202-1211.
4. Astuti S.D. et al. Antimicrobial Photodynamic Effectiveness of Light Emitting Diode (Led) For Inactivation on Staphylococcus aureus Bacteria and Wound Healing in Infectious Wound Mice, PIT-FMB & SEACOMP 2019. Journal of Physics: Conference Series, 2020.
5. Lande R. et al. Description of risk factors and complications of tooth extraction at RSGM Pspdg-Fk Unsrat. E-DENTAL, 2015, vol. 3(2).
6. Wilkinson H.N. et al. Wound healing: Cellular mechanisms and pathological outcomes. Open biology, 2020, vol. 10(9). pp. 200- 223.
7. Lee Y.S. et al. Wound healing in development. Birth Defects Research Part C: Embryo Today: Reviews, 2012, vol. 96(3), pp. 213- 222.
8. Pakyari M. et al. Critical role of transforming growth factor beta in different phases of wound healing. Advances in wound care, 2013, vol. 2(5), pp. 215-224.
9. Lichtman, M. K. et al. Transforming growth factor beta (TGF-ß) isoforms in wound healing and fibrosis. Wound Repair and Regeneration, 2016, vol. 24(2), pp. 215-222.
10. Alfaro M.P. et al. A physiological role for connective tissue growth factor in early wound healing. Laboratory investigation, 2013, vol. 93(1), pp. 81-95.
11. Singh S. et al. The physiology of wound healing. Surgery (Oxford), 2017, vol. 35(9), pp. 473-477.
12. Astuti S.D. et al. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis. BMC Oral Health, 2017, vol. 21 (80).
13. Prasetya R.C. et al. Neutrophil infiltration in rats with periodontitis after administration of ethanolic extract of mangosteen peel. Indonesian Dentistry Magazine, 2014, vol. 21(1), pp. 33-38.
14. Coleman J.J. et al. Adverse drug reactions. Clinical Medicine, 2016, vol. 16(5), p. 481.
15. Schatz S. et al. Adverse drug reactions. Pharmacy Practice, 2015, vol. 1(1).
16. Idacahyati K. et al. Correlation between the rate of side effects of non-steroidal anti-inflammatory drugs with age and gender. Indonesian Journal of Pharmacy and Pharmaceutical Sciences. (Internet), 2019, vol. 6, pp. 56-61.
17. Astuti S. D et al. An in-vivo study of photobiomodulation using 403 nm and 649 nm diode lasers for molar tooth extraction wound healing in wistar rats. Odontology, 2022, vol. 110(2), pp. 240-253.
18. Hamblin M.R. et al. Mechanisms and applications of the antiin inflammatory effects of photobiomodulation. AIMS Biophysics, 2017, vol. 4(3), pp. 337-361.
19. Sunarko S.A. et al. Antimicrobial effect of pleomeleangustifolia pheophytin A activation with diode laser to streptococcus mutans. In Journal of Physics: Conference Series, 2017, vol. 853(1), pp. 012039.
20. Mardianto A.I. et al. Photodynamic Inactivation of Streptococcus mutan Bacteri with Photosensitizer Moringa oleifera Activated by Light Emitting Diode (LED). In Journal of Physics: Conference Series, 2020, vol. 1505(1), pp. 012061.
21. Suhariningsih et al. The effect of electric field, magnetic field, and infrared ray combination to reduce HOMA-IR index and GLUT 4 in diabetic model of Mus musculus. Lasers in Medical Science, 2020, vol. 35(6), pp. 1315-1321.
22. Astuti S.D. et al. Effectiveness Photodynamic Inactivation with Wide Spectrum Range of Diode Laser to Staphylococcus aureus Bacteria with Endogenous Photosensitizer: An in vitro Study. Journal of International Dental and Medical Research, 2019, vol. 12(2), pp. 481-486.
23. Asima E. et al. The Effect of Giving Low-Level Laser Therapy on the Healing Process of Second Degree Burns. Pathology Magazine, 2012, vol. 21(2), pp. 24-30.
24. Hosseinpour S. et al. Molecular impacts of photobiomodulation on bone regeneration: a systematic review. Progress in biophysics and molecular biology, 2019, vol. 149, pp. 147-159.
25. Permatasari P. . et al. Антибактериальная эффективность хлорофилла листьев катука(Sauropus androgynus (L) Merr) с активацией синим и красным лазером в отношении биопленки aggregatibacter actinomycetemcomitans и enterococcus faecalis. Biomedical Photonics, 2023, vol. 12(1), pp. 14-21.
26. Carrera E.T. et al. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review. Laser physics, 2016, vol. 26(12).
27. Astuti S.D. et al. Photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm with exogenous chlorophyll of Dracaena angustifolia leaves. Biomedical Photonic, 2019, vol. 8(2), pp. 4-13.
28. Schneider M. et al. The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers in Medical Science, 2012, vol. 27, pp. 615-620.
29. Astuti S.D. et al. Effectiveness of Bacterial Biofilms Photodynamic Inactivation Mediated by Curcumin Extract, Nanodoxycycline and Laser Diode. Biomedical Photonic, 2020, vol. 9(4), pp. 4-14.
30. Walsh L.J. Clinical applications of low-level laser therapy: Current use and future potential.
31. Dompe C. et al. Photobiomodulation underlying mechanism and clinical applications. Journal of clinical medicine, 2020, Vol. 9(6).
32. Hamblin M.R. et al. Photobiomodulation therapy mechanisms beyond cytochrome c oxidase. Photobiomodulation, Photomedicine, and Laser Surgery, 2022, vol. 40(2), pp. 75-77.
33. Karkada G. et al. Effect of photobiomodulation therapy on inflammatory cytokines in healing dynamics of diabetic wounds: a systematic review of preclinical studies. Archives of physiology and biochemistry, 2023, vol. 129(3), pp. 663-670.
34. Khan I. et al. Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-ß1. Scientific reports, 2021, vol. 11(1).
35. Gupta A. et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. Journal of Biophotonics, 2015, vol. 8(6), pp. 489-501.
36. Mokoena D. et al. Role of photobiomodulation on the activation of the Smad pathway via TGF-ß in wound healing. Journal of Photochemistry and Photobiology B: Biology, 2018, vol. 189, pp. 138-144.
37. Hamblin M.R. et al. Photobiomodulation or low-level laser therapy. Journal of biophotonics, 2016, vol. 9(11), pp. 12.
38. Murphy P.S. et al. Advances in wound healing: a review of current wound healing products. Plastic surgery international, 2012.
39. Otterço A.N. et al. Photobiomodulation mechanisms in the kinetics of the wound healing process in rats. Journal of Photochemistry and Photobiology B: Biology, 2018, vol. 183, pp. 22-29.
40. Peplow P.V. et al. Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomedicine and laser surgery, 2010, vol. 28(3), pp. 291-325.
41. Cheng Y. et al. Photobiomodulation inhibits long-term structural and functional lesions of diabetic retinopathy. Diabetes, 2018, vol. 67(2), pp. 291-298.
42. Lima A.A. M et al. Evaluation of corticosterone and IL-1ß, IL-6, IL-10 and TNF-α. – 2014.
Рецензия
Для цитирования:
Astuti S.D., Nashichah R., Widiyanti P., Setiawatie E.M., Amir M.S., Apsari A., Widyastuti , Hermanto E., Susilo Y., Yaqubi A.K., Nurdin D.I., Anuar N. Эффективность применения лазера с длиной волны 650 нм для ускорения заживления ран после удаления зуба. Biomedical Photonics. 2024;13(1):4-15. https://doi.org/10.24931/2413-9432-2024-13-1-4-15
For citation:
Astuti S.D., Nashichah R., Widiyanti P., Setiawatie E.M., Amir M.S., Apsari A., Widyastuti , Hermanto E., Susilo Y., Yaqubi A.K., Nurdin D.I., Anuar N. Effectiveness of 650 nm red laser photobiomodulation therapy to accelerate wound healing post tooth extraction. Biomedical Photonics. 2024;13(1):4-15. https://doi.org/10.24931/2413-9432-2024-13-1-4-15