Preview

Biomedical Photonics

Advanced search

Photodynamic therapy with methylene blue and chlorin e6 photosensitizers: study on Ehrlich carcinoma mice model

https://doi.org/10.24931/2413-9432-2024-13-2-9-18

Abstract

Hypoxia negatively affcts the effctiveness of all types of anticancer therapy, in particular photodynamic therapy (PDT). In this regard, various approaches to overcome the limitations associated with hypoxia are widely discussed in the literature, one of them is the use of photosensitizers (PS) operating through the fist mechanism of the photodynamic reaction, such as methylene blue (MB). Previously, we have demonstrated that MB can have a positive effect on tumor oxygenation. In this work, we investigated the photodynamic activity of MB and a combination of MB with chlorin e6 on a tumor in vivo using a model of Ehrlich carcinoma. PDT was studied with the joint and separate administration of chlorin e6 and MB. The accumulation and localization of MB and its combination with chlorin e6 in vivo was assessed using video ˛uorescence and spectroscopic methods, and the effect of laser exposure on accumulation was analyzed. After the PDT with chlorin e6, MB and a combination of MB with chlorin e6, a good therapeutic effect and a decrease in the tumor growth rate were observed compared to the control, especially in groups with PDT with MB and with the simultaneous administration of chlorin e6 and MB. The level of tumor oxygenation on days 3 and 5 after PDT was higher for groups with irradiation, the highest oxygenation on the 5th day after PDT was observed in the group with PDT only with MB. Phasor diagrams of tumors after PDT show a deviation from the metabolic trajectory and a shift towards a longer lifetimes compared to the control tumor, which indicates the presence of lipid peroxidation products. Thus, tumor regression after PDT is associated with the direct destruction of tumor cells under the in˛uence of reactive oxygen species formed during PDT. Thus, the effectiveness of PDT with the combined use of MB and chlorin e6 has been demonstrated, and the main mechanisms of the antitumor effect of the combination of these PS have been studied.

About the Authors

D. V. Pominova
Prokhorov General Physics Institute of Russian Academy of Sciences; National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Moscow



A. V. Ryabova
Prokhorov General Physics Institute of Russian Academy of Sciences; National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Moscow



A. S. Skobeltsin
Prokhorov General Physics Institute of Russian Academy of Sciences
Russian Federation

Moscow



I. V. Markova
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Moscow



I. D. Romanishkin
Prokhorov General Physics Institute of Russian Academy of Sciences
Russian Federation

Moscow



References

1. Hockel M., Vaupel P. Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects, JNCI Journal of the National Cancer Institute, 2001, vol. 93 (4), pp. 266–276. doi:10.1093/jnci/93.4.266.

2. Vaupel P., Harrison L. Tumor Hypoxia: Causative Factors, Compensatory Mechanisms, and Cellular Response, The Oncologist, 2004, vol. 9 (S5), pp. 4–9. doi:10.1634/theoncologist.9-90005-4.

3. Robert Grimes D., Partridge M. A Mechanistic Investigation of the Oxygen Fixation Hypothesis and Oxygen Enhancement Ratio, Biomed. Phys. Eng. Express, 2015, vol. 1 (4), pp. 045209. doi:10.1088/2057-1976/1/4/045209.

4. Casazza A., Di Conza G., Wenes M. et al. Tumor Stroma: A Complexity Dictated by the Hypoxic Tumor Microenvironment, Oncogene, 2014, vol. 33 (14), pp. 1743–1754. doi:10.1038/onc.2013.121.

5. Bader S.B., Dewhirst M.W., Hammond E.M. Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer, Cancers, 2020, vol. 13 (1), pp. 23. doi:10.3390/cancers13010023.

6. Vaupel P., Flood A.B., Swartz H.M. Oxygenation Status of Malignant Tumors vs. Normal Tissues: Critical Evaluation and Updated Data Source Based on Direct Measurements with pO2 Microsensors, Appl Magn Reson, 2021, vol. 52 (10), pp. 1451–1479. doi:10.1007/s00723-021-01383-6.

7. Zhang Q., Yan Q., Yang H. et al. Oxygen Sensing and Adaptability Won the 2019 Nobel Prize in Physiology or Medicine, Genes & Diseases, 2019, vol. 6 (4), pp. 328–332. doi:10.1016/j.gendis.2019.10.006.

8. Rankin E.B., Giaccia A.J. Hypoxic Control of Metastasis, Science, 2016, vol. 352 (6282), pp. 175–180. doi:10.1126/science.aaf4405.

9. LaGory E.L., Giaccia A.J. The Ever-Expanding Role of HIF in Tumour and Stromal Biology, Nat Cell Biol, 2016, vol. 18 (4), pp. 356–365. doi:10.1038/ncb3330.

10. Semenza G.L. Hypoxia-Inducible Factors in Physiology and Medicine, Cell, 2012, vol. 148 (3), pp. 399–408. doi:10.1016/j.cell.2012.01.021.

11. Jin M.-Z., Jin W.-L. The Updated Landscape of Tumor Microenvironment and Drug Repurposing, Sig Transduct Target Ther, 2020, vol. 5 (1), pp. 166. doi:10.1038/s41392-020-00280-x.

12. Krisnawan V.E., Stanley J.A., Schwarz J.K. et al. Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance, Cancers, 2020, vol. 12 (10), pp. 2916. doi:10.3390/cancers12102916.

13. Sahu A., Kwon I., Tae G. Improving Cancer Therapy through the Nanomaterials-Assisted Alleviation of Hypoxia, Biomaterials, 2020, vol. 228, pp. 119578. doi:10.1016/j.biomaterials.2019.119578.

14. Ravichandran G., Yadav D.N., Murugappan S. et al. “Nano Effects”: A Review on Nanoparticle-Induced Multifarious Systemic Effects on Cancer Theranostic Applications, Mater. Adv., 2022, vol. 3 (22), pp. 8001–8011. doi:10.1039/D2MA00784C.

15. Zhao L., Fu C., Tan L. et al. Advanced Nanotechnology for Hypoxia-Associated Antitumor Therapy, Nanoscale, 2020, vol. 12 (5), pp. 2855– 2874. doi:10.1039/C9NR09071A.

16. Mansoori B., Mohammadi A., Amin Doustvandi M. et al. Photodynamic Therapy for Cancer: Role of Natural Products, Photodiagnosis and Photodynamic Therapy, 2019, vol. 26, pp. 395–404. doi:10.1016/j.pdpdt.2019.04.033.

17. Correia J.H., Rodrigues J.A., Pimenta S. et al. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions, Pharmaceutics, 2021, vol. 13 (9), pp. 1332. doi:10.3390/pharmaceutics13091332.

18. Jiang W., Liang M., Lei Q. et al. The Current Status of Photodynamic Therapy in Cancer Treatment, Cancers, 2023, vol. 15 (3), pp. 585. doi:10.3390/cancers15030585.

19. Olyushin V.E., Kukanov K.K., Nechaeva A.S. et al. Photodynamic Therapy in Neurooncology, Biomedical photonics, 2023, vol. 12 (3), pp. 25–35. doi:10.24931/2413-9432-2023-12-3-25-35.

20. Villalpando-Rodriguez G.E., Gibson S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat, Oxidative Medicine and Cellular Longevity, 2021, vol. 2021, pp. 1–17. doi:10.1155/2021/9912436.

21. Krasnovskiĭ A.A. [Photodynamic activity and singlet oxygen], Biofizika, 2004, vol. 49 (2), pp. 305–321.

22. Zhao X., Liu J., Fan J. et al. Recent Progress in Photosensitizers for Overcoming the Challenges of Photodynamic Therapy: From Molecular Design to Application, Chem. Soc. Rev., 2021, vol. 50 (6), pp. 4185–4219. doi:10.1039/D0CS00173B.

23. Baptista M.S., Indig G.L. Effect of BSA Binding on Photophysical and Photochemical Properties of Triarylmethane Dyes, J. Phys. Chem. B, 1998, vol. 102 (23), pp. 4678–4688. doi:10.1021/jp981185n.

24. Wan Y., Fu L., Li C. et al. Conquering the Hypoxia Limitation for Photodynamic Therapy, Advanced Materials, 2021, vol. 33 (48), pp. 2103978. doi:10.1002/adma.202103978.

25. Pominova D.V., Ryabova A.V., Skobeltsin A.S. et al. Spectroscopic Study of Methylene Blue in Vivo: Effects on Tissue Oxygenation and Tumor Metabolism, Biomedical photonics, 2023, vol. 12 (1), pp. 4–13. doi:10.24931/2413-9432-2023-12-1-4-13.

26. Pominova D., Ryabova A., Skobeltsin A. et al. The Use of Methylene Blue to Control the Tumor Oxygenation Level, Photodiagnosis and Photodynamic Therapy, 2024, vol. 46, pp. 104047. doi:10.1016/j.pdpdt.2024.104047.

27. Sevcik P., Dunford H.B. Kinetics of the Oxidation of NADH by Methylene Blue in a Closed System, J. Phys. Chem., 1991, vol. 95 (6), pp. 2411–2415. doi:10.1021/j100159a054.

28. Engbersen J.F.J., Koudijs A., Van Der Plas H.C. Reaction of NADH Models with Methylene Blue, Recl. Trav. Chim. Pays-Bas, 2010, vol. 104 (5), pp. 131–138. doi:10.1002/recl.19851040503.

29. Chiarugi A., Dölle C., Felici R. et al. The NAD Metabolome — a Key Determinant of Cancer Cell Biology, Nat Rev Cancer, 2012, vol. 12 (11), pp. 741–752. doi:10.1038/nrc3340.

30. Jiang H., Jedoui M., Ye J. The Warburg Effct Drives Dedifirentiation through Epigenetic Reprogramming, Cancer Biol Med, 2024, vol. 20 (12), pp. 891–897. doi:10.20892/j.issn.2095-3941.2023.0467.

31. Jiang H., Greathouse R.L., Tiche S.J. et al. Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma, Cancer Research, 2023, vol. 83 (2), pp. 181–194. doi:10.1158/0008-5472.CAN-22-1029.

32. Komlódi T., Tretter L. Methylene Blue Stimulates Substrate-Level Phosphorylation Catalysed by Succinyl–CoA Ligase in the Citric Acid Cycle, Neuropharmacology, 2017, vol. 123, pp. 287–298. doi:10.1016/j.neuropharm.2017.05.009.

33. Taldaev A., Terekhov R., Nikitin I. et al. Methylene Blue in Anticancer Photodynamic Therapy: Systematic Review of Preclinical Studies, Front. Pharmacol., 2023, vol. 14, pp. 1264961. doi:10.3389/phar.2023.1264961.

34. Matsubara T., Kusuzaki K., Matsumine A. et al. Methylene Blue in Place of Acridine Orange as a Photosensitizer in Photodynamic Therapy of Osteosarcoma, In Vivo, 2008, vol. 22 (3), pp. 297–303.

35. Hak A., Ali M.S., Sankaranarayanan S.A. et al. Chlorin E6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine, ACS Appl. Bio Mater., 2023, vol. 6 (2), pp. 349–364. doi:10.1021/acsabm.2c00891.

36. Rynda A.Yu., Rostovtsev D.M., Olyushin V.E. et al. Therapeutic Pathomorphosis in Malignant Glioma Tissues after Photodynamic Therapy with −hlorin E6 (Reports of Two Clinical Cases), Biomedical photonics, 2020, vol. 9 (2), pp. 45–54. doi:10.24931/2413-9432-2020-9-2-45-54.

37. Filonenko E.V. Clinical Implementation and Scientifi Development of Photodynamic Therapy in Russia in 2010-2020, Biomedical photonics, 2022, vol. 10 (4), pp. 4–22. doi:10.24931/2413-9432-2021-9-4-4-22.

38. Panaseykin Y.A., Kapinus V.N., Filonenko E.V. et al. Photodynamic Therapy Treatment of Oral Cavity Cancer in Patients with Comorbidities, Biomedical photonics, 2023, Vol. 11 (4), pp. 19–24. doi:10.24931/2413-9432-2022-11-4-19-24.

39. Adimoolam M.G., A. V., Nalam M.R. et al. Chlorin E6 Loaded Lactoferrin Nanoparticles for Enhanced Photodynamic Therapy, J. Mater. Chem. B, 2017, vol. 5 (46), pp. 9189–9196. doi:10.1039/C7TB02599H.

40. Lim D.-J. Methylene Blue-Based Nano and Microparticles: Fabrication and Applications in Photodynamic Therapy, Polymers, 2021, vol. 13 (22), pp. 3955. doi:10.3390/polym13223955.

41. Alimu G., Yan T., Zhu L. et al. Liposomes Loaded with Dual Clinical Photosensitizers for Enhanced Photodynamic Therapy of Cervical Cancer, RSC Adv., 2023, Vol. 13 (6), pp. 3459–3467. doi:10.1039/ D2RA03055A.

42. Hompland T., Fjeldbo C.S., Lyng H. Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter, Cancers, 2021, vol. 13 (3), pp. 499. doi:10.3390/cancers13030499.

43. Stratonnikov A.A., Loschenov V.B. Evaluation of Blood Oxygen Saturation in Vivo from Diffuse Re˛ectance Spectra, J. Biomed. Opt., 2001, vol. 6 (4), pp. 457. doi:10.1117/1.1411979.

44. Atamna H., Kumar R. Protective Role of Methylene Blue in Alzheimer’s Disease via Mitochondria and Cytochromec Oxidase, JAD, 2010, vol. 20 (s2), pp. S439–S452. doi:10.3233/JAD-2010-100414.

45. Efendiev K.T., Alekseeva P.M., Shiryaev A.A. et al. Preliminary Low-Dose Photodynamic Exposure to Skin Cancer with Chlorin E6 Photosensitizer, Photodiagnosis and Photodynamic Therapy, 2022, vol. 38, pp. 102894. doi:10.1016/j.pdpdt.2022.102894.

46. Datta R., Alfonso-García A., Cinco R., Gratton E. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. // Scientific Reports. – 2015. – Т. 5, №1. – C. 9848.


Review

For citations:


Pominova D.V., Ryabova A.V., Skobeltsin A.S., Markova I.V., Romanishkin I.D. Photodynamic therapy with methylene blue and chlorin e6 photosensitizers: study on Ehrlich carcinoma mice model. Biomedical Photonics. 2024;13(2):9-18. https://doi.org/10.24931/2413-9432-2024-13-2-9-18

Views: 479


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)