Влияние фотобиомодуляционной терапии c использованием лазера (650 нм) на состояние десен после кюретажа
https://doi.org/10.24931/2413-9432-2024-13-3-4-13
Аннотация
Изучено влияние лазера, излучающего в красной области спектра, на способность к заживлению ран после химиотерапии. В исследовании участвовали 60 человек, которые были разделены на две группы: лечения и контрольная. Пациенты из группы лечения получали 60-секундную световую биомодуляционную терапию с использованием красного лазера с длиной волны 650 нм и световой дозой 3,5 Дж/см2. Были измерены десневой индекс, уровни простагландина E2, человеческого дефензина 2 и интерлейкина-1β в слюне пациентов из обеих групп. Принятый уровень значимости p кюретажа у пациентов группы лечения наблюдались более низкие уровни простагландина Е2, человеческого дефензина 2 и интерлейкина-1β, чем в контрольной группе. Десневой индекс у пациентов после кюретажа не выявил существенных различий между группами лечения и контрольной группой в день лечения, но значительно отличался на 3-й и 5-й дни. В эти сроки в группе лечения наблюдалось уменьшение признаков воспаления и ускорение выздоровления. Результаты указывают на возможные преимущества лечения лазером, излучающим в красной области спектра, для восстановления после химиотерапии. Фотобиомодуляционная терапия красным лазером может способствовать процессам заживления у пациентов после кюретажа согласно результатам анализа десневого индекса, простагландина Е2, человеческого дефенсина 2 и интерлейкина-1β.
Ключевые слова
Об авторах
D. T. WahyuningtyaИндонезия
Surabaya
S. D. Astuti
Индонезия
Surabaya
P. Widiyanti
Индонезия
Surabaya
E. M. Setiawatie
Индонезия
Surabaya
K. Guspiari
Индонезия
Surabaya
M. S. Amir
Индонезия
Surabaya
D. Arifianto
Индонезия
Surabaya
A. K. Yaqubi
Индонезия
Surabaya
A. Apsari
Индонезия
Surabaya
Y. Susilo
Индонезия
Surabaya
A. Syahrom
Малайзия
Johor Bahru
Список литературы
1. Astuti S. D. et al. An in-vivo study of photobiomodulation using 403 nm and 649 nm diode lasers for molar tooth extraction wound healing in wistar rats // Odontology. –2022. – Vol. 110 (2). – P. 240-253. doi: https://doi.org/10.1007/s10266-021-00653-w
2. Sağlam M. et al. Combined application of Er: YAG and Nd: YAG lasers in treatment of chronic periodontitis. A split‐mouth, single‐blind, randomized controlled trial // Journal of periodontal research. – 2017. – Vol 52(5). – P. 853-862. doi: https://doi.org/10.1111/jre.12454
3. Astuti S.D. et al. The efficacy of photodynamic inactivation with laser diode on Staphylococcus aureus biofilm with various ages of biofilm // Infectious disease reports. – 2020. – Vol. 12(S1). – P. 68-74. doi: https://doi.org/10.4081/idr.2020.8736
4. Astuti S.D. et al. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans // In AIP Conference Proceedings. – 2016. –Vol. 1718(1). – P. 120001.
5. Daigo Y. et al. Wound healing and cell dynamics including mesenchymal and dental pulp stem cells induced by photobiomodulation therapy: an example of socket-preserving effects after tooth extraction in rats and a literature review // International Journal of Molecular Sciences. – 2020. – Vol. 21(18). – P. 6850. doi: https://doi.org/10.3390/ijms21186850
6. de Paula Eduardo C. et al. Laser phototherapy in the treatment of periodontal disease. A review // Lasers in medical science. – 2010. – Vol. 25 (6). – P. 781-792. doi: DOI 10.1007/s10103-010-0812-y
7. Eming S.A. et al. Wound repair and regeneration: mechanisms, signaling, and translation // Science translational medicine. – 2014. – Vol. 6 (265). – P. 265sr6-265sr6. doi: DOI: 10.1126/scitranslmed.3009337
8. Mardianto A.I. et al. Photodynamic Inactivation of Streptococcus mutan Bacteri with Photosensitizer Moringa oleifera Activated by Light Emitting Diode (LED) // In Journal of Physics: Conference Series. – 2020. – Vol. 1505 (1). – P. 012061
9. Sutherland J.C. et al. Biological Effects of Polychromatic Light // Photochemistry and photobiology. – 2002. – Vol. 76 (2). – P. 164-170. doi: https://doi.org/10.1562/0031-8655(2002)0760164BEOPL2.0.CO2
10. Astuti S.D. et al. Photodynamic effectiveness of laser diode combined with ozone to reduce Staphylicoccus aureus biofilm with exogenous chlorophyll of Dracaena angustifolia leaves // Biomedical Photonics. – 2019. – Vol. 8 (2). – P. 4-13.
11. Correia J.H. et al. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions // Pharmaceutics. – 2021. – Vol. 13 (9). – P. 1332. doi: https://doi.org/10.3390/pharmaceutics13091332
12. Astuti S.D. et al. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis // BMC oral health. – 2021. – Vol. 21(1). – P. 1-15.
13. Hung C.M. et al. Gingyo-san enhances immunity and potentiates infectious bursal disease vaccination. Evid // Based Complementary Altern Med. – 2011. doi: https://doi.org/10.1093/ecam/nep021
14. Plaetzer K. et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects // J Lasers Med Sci. – 2009. – Vol. 24 (2). – P. 259-268.
15. Ren C. et al. The effectiveness of low-level laser therapy as an adjunct to non-surgical periodontal treatment: a meta-analysis // J. Periodontal Res. – 2017. – Vol. 52 (1). – P. 8-20. doi: https://doi.org/10.1111/jre.12361
16. Gilowski L. et al. Amount of interleukin-1β and interleukin-1 receptor antagonist in periodontitis and healthy patients // Arch. Oral Biol. – 2014. – Vol. 59 (7). – P. 729-734. doi: https://doi.org/10.1016/j.archoralbio.2014.04.007
17. Harvey J.D. et al. Periodontal microbiology // Dent. Clin. – 2017. – Vol. 61 (2). – P. 253-269. doi: https://doi.org/10.1016/j.cden.2016.11.005
18. Iglesias-Bartolome R. et al. Transcriptional signature primes human oral mucosa for rapid wound healing // Sci. Transl. Med. – 2018. – Vol. 10 (451). – P. eaap8798. doi: 10.1126/scitranslmed.aap8798
19. Savitt E.D. et al. Distribution of certain subgingival microbial species in selected periodontal conditions // J Periodontal Res. – 1984. – Vol. 19 (2). – P. 111-23. doi: https://doi.org/10.1111/j.1600-0765.1984.tb00800.x
20. Ismiyatin K. et al. Different 650 nm laser diode irradiation times affect the viability and proliferation of human periodontal ligament fibroblast cells // Dent. J (Majalah Kedokteran Gigi. – 2019. – Vol. 52 (3). – P. 142-142.
21. Politis C. et al. Wound healing problems in the mouth // Front. Physiol. – 2016. – Vol. 7. – P. 507. doi: https://doi.org/10.3389/fphys.2016.00507
22. Popova C. et al. Correlation Between Healing Parameters and PGE2 Expression Levels in Non-Surgical Therapy of Chronic Periodontitis // J of IMAB – Annual Proceeding Scientific Papers. – 2017. – Vol. 23 (4). – P. 1758-1764. doi: 10.5272/jimab.2017234.1758
23. Arjmand B. et al. Low-Level Laser Therapy: Potential and Complications // J Lasers Med Sci. – 2021. – Vol. 12. doi: 10.34172/jlms.2021.42
24. Rosso M.P.D.O. et al. Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review // J. Biomed. Eng. – 2018. – Vol. 5 (2). – P. 44. doi: https://doi.org/10.3390/bioengineering5020044
25. Farivar S. et al. Biological effects of low-level laser therapy // J Lasers Med Sci. – 2014. – Vol. 5 (2). – P. 58.
26. Suhariningsih D. et al. The effect of electric field, magnetic field, and infrared ray combination to reduce HOMA-IR index and GLUT 4 in diabetic model of Mus musculus // Lasers in Medical Science. – 2020. – Vol. 35 (6). – P. 1315-1321.
27. Astuti S.D. et al. Effectiveness Photodynamic Inactivation with Wide Spectrum Range of Diode Laser to Staphylococcus aureus Bacteria with Endogenous Photosensitizer: An in vitro Study // Journal of International Dental and Medical Research. – 2019. – Vol. 12 (2). – Р. 481-486.
28. Ren C. et al. The effectiveness of low-level laser therapy as an adjunct to non-surgical periodontal treatment: a meta-analysis // J. Periodontal Res. – 2017. – Vol. 52 (1). – P. 8-20. doi: https://doi.org/10.1111/jre.12361
29. Setiawatie E.M. et al. An in vitro Anti-microbial Photodynamic Therapy (APDT) with Blue LEDs to activate chlorophylls of Alfalfa Medicago Sativa L on Aggregatibacter actinomycetemcomitans // J. Int. Dent. Medical Res. – 2016. – Vol. 9 (2). – P. 118-125.
30. Sidharthan S. et al. Gingival crevicular fluid levels of Interleukin-22 (IL-22) and human β Defensin-2 (hBD-2) in periodontal health and disease: A correlative study // J Oral Biol Craniofac Res. – 2020. – Vol. 10 (4). – P. 498-503. doi: https://doi.org/10.1016/j.jobcr.2020.07.021
31. Tang E. et al. Laser-activated transforming growth factor-β1 induces human β-defensin 2: implications for laser therapies for periodontitis and peri-implantitis // J. Periodontal Res. – 2017. – Vol. 52 (3). – P. 360-367. doi: https://doi.org/10.1111/jre.12399
32. Muliani Izat W.O.A. et al. The Effectiveness of Sea Cucumber Extract (Holothuroidae Sp) on Interleukin-1β (IL-1β) Expression in Periodontitis (Research on Wistar Rats) // (Doctoral dissertation, Hasanuddin University). – 2020.
33. Genco R.J. et al. Periodontal disease and overall health: a clinician’s guide // Yardley, Pennsylvania, USA: Professional Audience Communications Inc. – 2010. – P. 254-263.
34. Santosa B. et al. Elisa Method for Measurement of Metallothionein Protein in Rice // Leaves Ir Bagendit. – 2020.
35. Sakurai Y. et al. Inhibitory effect of low-level laser irradiation on LPS stimulated prostaglandin E2 production and cyclooxygenase 2 in human gingival fibroblasts // Eur. J. Oral Sci. – 2000. – Vol. 108 (1). – P. 29-34. doi: https://doi.org/10.1034/j.1600-0722.2000.00783.x
36. Hanna R. et al. Phototherapy as a rational antioxidant treatment modality in COVID-19 management; new concept and strategic approach: a critical review // Antioxidants. – 2020. – Vol. 9 (9). – P. 875. doi: https://doi.org/10.3390/antiox9090875
37. Ebrahimi P. et al. Effect of photobiomodulation in secondary intention gingival wound healing a systematic review and meta-analysis // BMC Oral Health. – 2021. – Vol. 21 (1). – P. 1-16.
38. Astuti S.D. et al. Effectiveness of 650 nm red laser photobiomodulation therapy to accelerate wound healing post tooth extraction // Biomedical Photonics. – 2024. – Vol. 13 (1). – P. 4-15. https://doi.org/10.24931/2413-9432-2024-13-1-4-15
39. Genco R.J. et al. Periodontal disease and overall health: a clinician’s guide // Yardley, Pennsylvania, USA: Professional Audience Communications Inc. – 2010. – P. 254-263.
40. Avci P. et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring // Semin Cutan Med Surg. – 2013. – Vol. 32 (1). – P. 41.
41. Rasouli M. et al. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions // Acta Histochemica. –2021. – Vol. 123 (7). – P. 151785. doi: https://doi.org/10.1016/j.acthis.2021.151785.
Рецензия
Для цитирования:
Wahyuningtya D.T., Astuti S.D., Widiyanti P., Setiawatie E.M., Guspiari K., Amir M.S., Arifianto D., Yaqubi A.K., Apsari A., Susilo Y., Syahrom A. Влияние фотобиомодуляционной терапии c использованием лазера (650 нм) на состояние десен после кюретажа. Biomedical Photonics. 2024;13(3):4-13. https://doi.org/10.24931/2413-9432-2024-13-3-4-13
For citation:
Wahyuningtya D.T., Astuti S.D., Widiyanti P., Setiawatie E.M., Guspiari K., Amir M.S., Arifianto D., Yaqubi A.K., Apsari A., Susilo Y., Syahrom A. Effect of photobiomodulation therapy with low level laser on gingival in post-curettage patients. Biomedical Photonics. 2024;13(3):4-13. https://doi.org/10.24931/2413-9432-2024-13-3-4-13