Preview

Biomedical Photonics

Advanced search

New cationic chlorin as potential agent for antimicrobial photodynamic therapy

https://doi.org/10.24931/2413-9432-2024-13-3-14-19

Abstract

Multiple drug resistance is a major global health security risk. Increasing resistance of bacteria to existing drugs puts on the agenda the search for alternative ways to combat antibiotic-resistant pathogens. One of these innovative methods is antimicrobial photodynamic therapy (APDT), which is equally effective against antibiotic-sensitive and antibiotic-resistant pathogens. The most effective photosensitizers (PS) for APDT are molecules containing positively charged groups in their composition. In this work, we have obtained a new cationic derivative of natural chlorin containing a pyridazine group in its composition, the introduction of which occurs using click chemistry approaches. The antimicrobial photoinduced cytotoxicity of the proposed cationic PS, as well as its uncharged precursor, was assessed against a number of gram-positive and gram-negative bacteria: S. aureus, K. pneumoniae, E. faecalis, P. aeruginosa. It has been shown that cationic chlorin exhibits an increased bactericidal effect when irradiated with light (λ = 660 nm, Ps = 70.73 mW/cm2) compared to its base form. When microbial suspensions were incubated with 24 μM cationic PS and subsequently irradiated, a significant bactericidal effect was observed against all of the aforementioned bacteria. As a result of microbiological studies, it was demonstrated that the proposed cationic PS exhibits high photoinduced antimicrobial activity.

About the Authors

N. V. Suvorov
Institute of Fine Chemical Technologies, MIREA-Russian Technological University
Russian Federation

Moscow



V. V. Shchelkova
Moscow Regional Research and Clinical Institute; N. Kosygin Russian State University
Russian Federation

Moscow



E. V. Rysanova
Moscow Regional Research and Clinical Institute
Russian Federation

Moscow



Z. T. Bagatelia
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



D. A. Diachenko
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



A. P. Afaniutin
AveDent, Dental Clinic
Russian Federation

Orel



Yu. L. Vasil’ev
Institute of Fine Chemical Technologies, MIREA-Russian Technological University; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



E. Yu. Diachkova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



I. C. Santana Santos
Sao Carlos School of Engineering, University of Sao Paulo
Brazil

Sao Paulo



M. A. Grin
Institute of Fine Chemical Technologies, MIREA-Russian Technological University
Russian Federation

Moscow



References

1. Macias J., Kahly O., Pattik-Edward R., Khan S., et al. Sepsis: A Systematic Review of Antibiotic Resistance and Antimicrobial Therapies, Mod Res Inflamm, 2022, vol. 11, no. 02, pp. 9–23. doi: 10.4236/mri.2022.112002.

2. Murray C. J., Ikuta K. S., Sharara F., Swetschinski L., et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, Lancet, 2022, vol. 399, no. 10325, pp. 629–655. doi: 10.1016/S0140-6736(21)02724-0.

3. Hamblin M. R., Hasan T. Photodynamic therapy: A new antimicrobial approach to infectious disease?, Photochem Photobiol Sci, 2004, vol. 3, no. 5, pp. 436–450. doi: 10.1039/b311900a.

4. Dai T., Huang Y. Y., Hamblin M. R. Photodynamic therapy for localized infections-State of the art, Photodiagnosis Photodyn Ther, 2009, vol. 6, no. 3–4, pp. 170–188. doi: 10.1016/j.pdpdt.2009.10.008.

5. Suvorov N., Pogorilyy V., Diachkova E., Vasil’ev Y., et al. Derivatives of natural chlorophylls as agents for antimicrobial photodynamic therapy, Int J Mol Sci, 2021, vol. 22, no. 12, p. 6392. doi: 10.3390/ijms22126392.

6. de Souza da Fonseca A., de Paoli F., Mencalha A. L. Photodynamic therapy for treatment of infected burns, Photodiagnosis Photodyn Ther, 2022, vol. 38, p. 102831. doi: 10.1016/j.pdpdt.2022.102831.

7. Huang L., Xuan Y., Koide Y., Zhiyentayev T., et al. Type i and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria, Lasers Surg Med, 2012, vol. 44, no. 6, pp. 490–499. doi: 10.1002/lsm.22045.

8. Bustamante V., Palavecino C. E. Effect of photodynamic therapy on multidrug-resistant Acinetobacter baumannii: A scoping review, Photodiagnosis Photodyn Ther, 2023, vol. 43, p. 103709. doi: 10.1016/j.pdpdt.2023.103709.

9. Jao Y., Ding S. J., Chen C. C. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review, J Dent Sci, 2023, vol. 18, no. 4, pp. 1453–1466. doi: 10.1016/j.jds.2023.07.002.

10. Hamblin M. R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes, Curr Opin Micro-biol, 2016, vol. 33, pp. 67–73. doi: 10.1016/j.mib.2016.06.008.

11. Bertolini G., Rossi F., Valduga G., Jori G., et al. Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli, FEMS Microbiol Lett, 1990, vol. 71, no. 1–2, pp. 149– 155. doi: 10.1111/j.1574-6968.1990.tb03814.x.

12. Nitzan Y., Gutterman M., Malik Z., Ehrenberg B. Inactivation of Gram‐Negative Bacteria By Photosensitized Porphyrins, Photo-chem Photobiol, 1992, vol. 55, no. 1, pp. 89–96. doi: 10.1111/j.1751-1097.1992.tb04213.x.

13. Merchat M., Bertolini G., Giacomini P., Villanueva A., et al. Mesosubstituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J Photochem Photo-biol B Biol, 1996, vol. 32, no. 3, pp. 153–157. doi: 10.1016/1011-1344(95)07147-4.

14. Kustov A. V., Kustova T. V., Belykh D. V., Khudyaeva I. S., et al. Synthesis and investigation of novel chlorin sensitizers containing the myristic acid residue for antimicrobial photodynamic therapy, Dye Pigment, 2020, vol. 173, p. 107948. doi: 10.1016/j.dyepig.2019.107948.

15. Ryazanova O., Voloshin I., Dubey I., Dubey L., et al. Fluorescent Studies on Cooperative Binding of Cationic Pheophorbide‐a Derivative to Polyphosphate, Ann NY Acad Sci, 2008, vol. 1130, no. 1, pp. 293–299. doi: 10.1196/annals.1430.033.

16. Miyatake T., Hasunuma Y., Mukai Y., Oki H., et al. Assemblies of ionic zinc chlorins assisted by water-soluble polypeptides, Bioorganic Med Chem, 2016, vol. 24, no. 5, pp. 1155–1161. doi: 10.1016/j.bmc.2016.01.054.

17. Kustov A. V., Belykh D. V., Smirnova N. L., Venediktov E. A., et al. Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy, Dye Pigment., 2018, vol. 149, pp. 553–559. doi: 10.1016/j.dyepig.2017.09.073.

18. Morshnev P. K., Kustov A. V., Drondel E. A., Khlydeev I. I., et al. The interaction of chlorin photosensitizers for photodynamic therapy with blood transport proteins, J Mol Liq, 2023, vol. 390, p. 123116. doi: 10.1016/j.molliq.2023.123116.

19. Brusov S. S., Koloskova Y. S., Grin M. A., Tiganova I. G., et al. New cationic purpurinimide for photodynamic inactivation of Pseudomonas Aeruginosa biofilms, Russ Biother J, 2014, vol. 13, no. 4, pp. 59–63.

20. Suvorov N. V., Cheskov D. A., Mironov A. F., and Grin M. A. Inverse electron demand Diels–Alder reaction as a novel method for functionalization of natural chlorins, Mendeleev Commun, 2019, vol. 29, no. 2, pp. 206–208. doi: 10.1016/j.mencom.2019.03.031.

21. Garcia de Carvalho G., Pacheco Mateo R., Costa e Silva R., Maquera Huacho P. M., et al. Chlorin-based photosensitizer under blue or red-light irradiation against multi-species bio-films related to periodontitis, Photodiagnosis Photodyn Ther, 2023, vol. 41, p. 103219. doi: 10.1016/j.pdpdt.2022.103219.

22. Yang W., Yoon Y., Lee Y., Oh H., et al. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies, Org Biomol Chem, 2021, vol. 19, no. 29, pp. 6546–6557. doi: 10.1039/d1ob00926e.


Review

For citations:


Suvorov N.V., Shchelkova V.V., Rysanova E.V., Bagatelia Z.T., Diachenko D.A., Afaniutin A.P., Vasil’ev Yu.L., Diachkova E.Yu., Santana Santos I.C., Grin M.A. New cationic chlorin as potential agent for antimicrobial photodynamic therapy. Biomedical Photonics. 2024;13(3):14-19. https://doi.org/10.24931/2413-9432-2024-13-3-14-19

Views: 315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)