Possibilities of interstitial photodynamic therapy in the treatment of brain glioblastoma
https://doi.org/10.24931/2413-9432-2025-14-1-4-19
Abstract
Interstitial photodynamic therapy (iPDT) is a minimally invasive treatment method based on the interaction of light, a photosensitizer (PS) and oxygen. In brain gliomas, iPDT involves the stereotactic introduction of one or more light guides into the target area to irradiate tumor cells and tissues that have accumulated PS, which subsequently causes necrosis and/or apoptosis of tumor cells, destruction of the tumor vascular network and causes an inflammatory reaction that triggers stimulation of the antitumor immune response.
The aim of the study was to analyze the possibility of using iPDT in the treatment of unifocal, small-sized (up to 3.5 cm) glioblastomas.
The study with iPDT included 7 patients with a unifocal variant of glioblastoma with a maximum tumor size of up to 3.5 cm and a Karnofsky score of at least 70 points. In 5 patients (71.4%) there was a relapse of glioblastoma, in 2 cases (28.6%) the tumor was diagnosed for the first time. As a PS, PS photoditazine was used, administered intravenously by drip at a dose of 1 mg/kg. Interstitial irradiation was performed using a laser (Latus 2.5 (Atkus, Russia)) with a wavelength of 662 nm and a maximum power of 2.5 W and cylindrical scattering fibers. The target tumor volume was determined after combining multimodal CT images (contrast-enhanced scanning, axial slices of 0.6 mm) with preoperative MRI, PET. Spatial precise interstitial irradiation of the tumor volume was planned using special software. The duration of irradiation did not exceed 15 min. The light dose was from 150 to 200 J/cm2. Transient clinical deterioration was recorded in about 2 patients (28.6%). These 2 patients had worsening neurological deficits in the early postoperative period (increase in hemiparesis from 4 points to 2 points in one patient and development of dysarthria and dysphasia in the second patient). The median overall survival from the first diagnosis of malignant glioma to death was 28.3 months. The median relapse-free survival was 13.1 months. MGMT status played a significant role in the outcome of patients treated with iPDT. Patients with a methylated MGMT promoter survived longer than patients with an unmethylated MGMT promoter by a median of 22.1 months, and they did not experience disease progression for an additional 9.3 months.
iPDT may be a promising treatment option in a population of patients at high risk of postoperative neurological deficit. It does not interfere with, but rather may complement, other treatment options for this disease, such as repeat radiation therapy and chemotherapy. iPDT remains a potential option for deep-seated gliomas in patients with high surgical risk and in case of tumor recurrence.
About the Authors
A. Yu. RyndaRussian Federation
St. Petersburg
V. E. Olyushin
Russian Federation
St. Petersburg
D. M. Rostovtsev
Russian Federation
St. Petersburg
Yu. M. Zabrodskaya
Russian Federation
St. Petersburg
G. V. Papayan
Russian Federation
St. Petersburg
References
1. Louis D.N., Perry A., Wesseling P. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol, 2021, Vol.23(8), pp. 1231-1251. doi: 10.1093/neuonc/noab106.
2. Ostrom Q.T., Cioffi G., Waite K., et al. CBTRUS Statistical Report: primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol, 2021, Vol.23, pp. III1–III105. doi: 10.1093/NEUONC/NOAB200
3. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Intraoperative photodynamic therapy in complex treatment of malignant gliomas. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko, 2023, Vol. 87(1), pp.25-34. (In Russian) doi:10.17116/neiro20238701125
4. Stepp H., Stummer W. 5-ALA in the management of malignant glioma. Lasers Surg Med, 2018, Vol.50, pp.399-419. doi: 10.1002/lsm.22933
5. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Intraoperative fluorescence control with chlorin E6 in resection of glial brain tumors. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko, 2021, Vol.85(4), pp. 20-28. (In Russian). doi:10.17116/neiro20218504120
6. Lietke S., Schmutzer M., Schwartz C. Interstitial Photodynamic Therapy Using 5-ALA for Malignant Glioma Recurrences. Cancers (Basel), 2021, Vol.13(8), pp.1767. doi: 10.3390/cancers13081767
7. Rynda A.Y., Rostovthev D.M., Zabrodskaya Y.M. et al. Immunotherapy with autologous dendritic cells in the complex treatment of malignant gliomas – results. J. Neurooncol, 2024, Vol.166, pp.309-319. doi: 10.1007/s11060-023-04559-1
8. Foglar M., Aumiller M., Quach S., et al. Interstitial photodynamic therapy of glioblastoma: An MRI-based follow-up analysis. Photodiagnosis and Photodynamic Therapy., 2024, Vol.46, pp.104117. doi: 10.1016/j.pdpdt.2024.104117
9. Muller P.J., Wilson B.C. Photodynamic Therapy for Malignant Newly Diagnosed Supratentorial Gliomas. J. Clin. Laser Med. Sur, 1996, Vol.14, pp.263-270. doi: 10.1089/clm.1996.14.263
10. Rynda A.Y., Olyushin, V., Rostovtsev D. Immunotherapy With Autological Dendritic Cells in the Structure of Complex Treatment of Gliomas. Neurosurgery, 2024, vol.70 (Suppl.1), pp. 196. doi: 10.1227/neu.0000000000002809_1244
11. Foglar M., Aumiller M., Bochmann K. Interstitial Photodynamic Therapy of Glioblastomas: A Long-Term Follow-up Analysis of Survival and Volumetric MRI Data. Cancers (Basel), 2023, Vol.15 (9), pp.2603. doi: 10.3390/cancers15092603
12. Romanishkin I.D., Savelieva T.A., Ospanov A. Comparison of optical-spectral characteristics of glioblastoma at intraoperative diagnosis and ex vivo optical biopsy. Biomedical Photonics, 2024, Vol.13(4), pp.4-12. doi:10.24931/2413-9432-2024-13-4-4-12
13. Rynda A.Yu., Rostovtsev D.M., Olyushin V.E. et al. Therapeutic pathomorphosis in malignant glioma tissues after photodynamic therapy with сhlorin e6 (reports of two clinical cases). Biomedical Photonics, 2020, Vol.9(2), pp. 45-54. doi: 10.24931/2413-9432-2020-9-2-45-54
14. Ospanov A., Romanishkin I., Savelieva T., et al. Optical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods. Int. J. Mol. Sci, 2023, Vol.24, pp.14432. doi:10.3390/ijms241914432
15. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Comparative analysis of 5-ALA and chlorin E6 fluorescence-guided navigation in malignant glioma surgery. Pirogov Russian Journal of Surgery = Khirurgiya. Zurnal im. N.I. Pirogova, 2022, Vol.1, pp.5-14. (In Russian) doi: 10.17116/hirurgia20220115
16. Johansson A., Faber F., Kniebühler G., et al. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Laser Surg. Med, 2013, Vol.45, pp.225-234. doi:10.1002/lsm.22126.
17. Savelieva T.A., Romanishkin I.D., Ospanov A., et al. Machine learning methods for spectrally-resolved imaging analysis in neuro-oncology. Biomedical Photonics, 2024, Vol.13(4), pp.40-54. doi: 10.24931/2413-9432-2024-13-4-40-54
18. Rynda A.Yu., Zabrodskaya Yu.M., Olyushin V.E., et al. Morphological evaluation of the effectiveness of fluorescence navigation with chlorin e6 in surgery for malignant gliomas. Arkhiv Patologii, 2021, Vol.83(5), pp.13-20. (In Russian) doi: 10.17116/patol20218305113
19. Henker C., Hiepel M.C., Kriesen T., et al. Volumetric assessment of glioblastoma and its predictive value for survival. Acta Neurochir, 2019, Vol.161, pp.1723-1732. doi: 10.1007/s00701-019-03966-6
20. Rynda A.Yu., Rostovtsev D.M., Olyushin V.E. Fluorescence-Guided Resection of Glioma – literature review. Russian Neurosurgical Journal named after professor A.L. Polenov, 2018, vol.X (1), pp.97-110. (In Russian)
21. Tzerkovsky D.A., Maslakov E.A., Bagrintsev D.A., Semak I.A., Protopovich Y.L., Chizh A.G., Tatur A.A., Fomenkov I.S., Stupak D.S. The role of photodynamic therapy in the treatment of primary, recurrent and metastatic malignant brain tumors. Biomedical Photonics, 2018, Vol.7(2), pp.37-49. (in Russian). doi: 10.24931/2413-9432-2018-7-2-37-49.
22. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma. Biomedical Photonics, 2021, Vol. 10(4), pp. 35-43 (in Russian). doi: 10.24931/2413-9432-2021-10-4-35-43
23. Kostron H., Hochleitner B.W., Obwegeser A., Seiwald M. Clinical and experimental results of photodynamic therapy in neurosurgery., 1994, pp.126-128. doi:10.1117/12.203437.
24. Potapov A.A., Chobulov S.A., Nikitin P.V., et al. Intraoperative vascular fluorescence in cerebral glioblastomas and vascular histological features. Burdenko's Journal of Neurosurgery, 2019, Vol.83(6), pp.21-34. (in Russian). doi: 10.17116/neiro20198306121
25. Rynda A.Yu., Rostovtsev D.M., Olyushin V.E., Zabrodskaya Yu.M. Fluorescence-guided resection of glioma using «photoditazin». Grekov's Bulletin of Surgery, 2017, Vol.176(5), pp.10-15. (In Russian). doi: 10.24884/0042-4625-2017-176-5-10-15
26. Rafaelian A., Martynov B., Chemodakova K., et al. Photodynamic interstitial stereotactic therapy for recurrent malignant glioma. Asian J Oncol, 2023, Vol.9, pp.14. doi:10.25259/ASJO-2022-69-(433)
27. Baran T.M., Foster T.H. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med Phys, 2014, Vol. 41, pp. 1-8. doi: 10.1118/1.4862078
28. Rynda A., Olyushin V., Rostovtsev D. Fluorescence navigation in glioma surgery using 5 ALA and chlorin E6. Neuro-Oncology, 2021, Vol. 23 (Suppl. 2), pp. ii25. doi: 10.1093/neuonc/noab180.086
29. Schwartz C., Rühm A., Tonn J.-C., Kreth S., Kreth F.-W. SURG-25 Interstitial photodynamic therapy of de-novo glioblastoma multiforme who iv. Neuro-Oncol, 2015, vol.17, pp. v219-v220. doi: 10.1093/neuonc/nov235.25
30. Beck T.J., Kreth F.W., Beyer W., et al. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Laser Surg. Med, 2007, Vol.39, pp.386-393. doi:10.1002/lsm.20507.
31. Romanishkin I.D., Savelieva T.A., Ospanov A., et al. Classification of intracranial tumors based on optical-spectral analysis. Biomedical Photonics, 2023, Vol.12(3), pp.4-10. doi; 10.24931/2413-9432-2023-12-3-4-10
32. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Patients with long term survival in malignant gliomas after photodynamic therapy. S.S. Korsakov Journal of Neurology and Psychiatry, 2024, Vol.124(6), pp.54-61. (In Russian). doi: 10.17116/jnevro202412406154
33. Stummer W., Beck T., Beyer W., et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J. Neuro-Oncol, 2007, Vol.87, pp.103-109. doi:10.1007/s11060-007-9497-x
34. Rafaelian A.A., Martynov B.V., Chemodakova K.A. Stereotactic Photodynamic Therapy of Recurrent Malignant Gliomas. Sovrem Tekhnologii Med, 2024, Vol.16(2), pp.58-65. doi: 10.17691/stm2024.16.2.06
35. Muller P.J., Wilson B.C. Photodynamic therapy of malignant brain tumours. Can. J. Neurol. Sci, 1990, Vol.17 (2), pp.193-198. doi: 10.1017/s0317167100030444.
36. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., Zabrodskaya Yu.M., Papayan G.V. Results of microsurgical resection of glioblastomas under endoscopic and fluorescent control. Biomedical Photonics, 2024, Vol.13(3), pp.20-30. doi: 10.24931/2413-9432-2024-13-3-20-30
37. Origitano T.C., Reichman O.H. Photodynamic Therapy for Intracranial Neoplasms. Neurosurgery, 1993, vol. 32, pp. 587-596. doi:10.1227/00006123-199304000-00015.
38. Rynda A.Y., Olyushin V.E., Rostovtsev D.M. et al. Patients with Long Term Survival in Malignant Gliomas after Photodynamic Therapy. Neurosci Behav Physi, 2024, Vol. 54, pp. 1215-1221. doi:10.1007/s11055-024-01717-4
39. Savelieva T., Romanishkin I. Ospanov A. Machine Learning and Artificial Intelligence Systems Based on the Optical Spectral Analysis in Neuro-Oncology. Photonics, 2025, vol.12(1), pp.37. doi: 10.3390/photonics12010037
40. Olyushin V.E., Kukanov K.K., Nechaeva A.S., Sklyar S.S., Vershinin A.E., Dikonenko M.V., Golikova A.S., Mansurov A.S., Safarov B.I., Rynda A.Y., Papayan G.V. Photodynamic therapy in neurooncology. Biomedical Photonics, 2023, Vol.12(3), pp.25-35. doi: 10.24931/2413-9432-2023-12-3-25-35
41. Quach S., Schwartz C., Aumiller M. et al. Interstitial photodynamic therapy for newly diagnosed glioblastoma. J. Neurooncol, 2023, Vol.162, pp.217-223. doi:10.1007/s11060-023-04284-9
42. Rafaelyan A.A., Alekseev D.E., Martynov B.V., et al. Stereotactic photodynamic therapy for recurrent glioblastoma. Case report and literature review. Burdenko's Journal of Neurosurgery, 2020, Vol.84(5), pp.81-88. (In Russian). doi: 10.17116/neiro20208405181
43. Krishnamurthy S., Powers S.K., Witmer P., Brown T. Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Laser Surg. Med, 2000, Vol.27, pp. 224-234. doi:10.1002/1096-9101(2000)27:3<224:aid-lsm4>3.0.co;2-#
44. Kaneko S. 悪性グリオーマに対する光線力学療法. Nippon Laser Igakkaishi, 2011, Vol. 32, pp.131-138. doi:10.2530/jslsm.32.131.
45. Powers S.K., Cush S.S., Walstad D.L., Kwock L. Stereotactic intratumoral photodynamic therapy for recurrent malignant brain tumors. Neurosurgery, 1991, Vol.29, pp. 688. doi:10.1097/00006123-199111000-00008.
46. Kostron H., Obwegeser A., Jakober R. Photodynamic therapy in neurosurgery: a review. J. Photochem. Photobiol. B, 1996, Vol.36(2), pp.157-168. doi: 10.1016/s1011-1344(96)07364-2
47. Ramakrishnan D., Reppert M., Krycia M. Evolution and implementation of radiographic response criteria in neuro oncology. Neuro-Oncology Advances, 2023, Vol.5 (1), pp. vdad118. doi:10.1093/noajnl/vdad118
48. National Institutes of Health Common Terminology Criteria for Adverse Events (CTCAE); National Cancer Institute: Bethesda, MD, USA, 2017.
Review
For citations:
Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., Zabrodskaya Yu.M., Papayan G.V. Possibilities of interstitial photodynamic therapy in the treatment of brain glioblastoma. Biomedical Photonics. 2025;14(1):4-19. https://doi.org/10.24931/2413-9432-2025-14-1-4-19