Preview

Biomedical Photonics

Advanced search

Study of accumulation of water-soluble asymmetric cationic porphyrins in gram-positive wound infection pathogens during photodynamic inactivation

https://doi.org/10.24931/2413-9432-2025-14-2-4-11

Abstract

The paper presents the results of a study on the accumulation of three dierent compounds of water-soluble asymmetric cationic porphyrins by the bacteria S. aureus, S. epidermidis, S. haemolyticus and E. faecalis using ow cytouorimetry and uorescence microscopy. The studied microorganisms were a sample (n=4) of isolates from biomaterial (wound discharge) from patients with wound infections (burn wound, trophic ulcer, infection of the surgical area, etc.). The tested strains showed resistance to 1-7 antibiotics, two strains were carriers of the mecA gene. Porphyrins containing heterocyclic fragments (benzoxazole, N-methyl benzimidazole, and benzothiazole residues) on the periphery of the porphyrin cycle can accumulate in bacterial cells to varying degrees: porphyrin with N-methyl benzimidazole penetrates bacteria to a greater extent, and the uorescence signal is most intense for S. aureus and E. faecalis after incubation with this species. connections. There is some heterogeneity in the bacterial cell population with respect to the ability to accumulate porphyrins, and the presence of bacterial lysis has been proven. S aureus after incubation with S-porphyrin and subsequent photodynamic inactivation under the inuence of light. The data obtained determine the prospects for further study of compounds and determination of their bactericidal potential.

About the Authors

D. V. Kvashnina
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



I. Yu. Shirokova
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



N. A. Belyanina
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



S. A. Syrbu
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Ivanovo



N. Sh. Lebedeva
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Ivanovo



Zh. V. Boeva
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



A. A. Burashnikova
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



E. N. Gorshkova
National Research Lobachevsky State University of Nizhny Novgorod
Russian Federation

Nizhny Novgorod



E. A. Razzorenova
National Research Lobachevsky State University of Nizhny Novgorod
Russian Federation

Nizhny Novgorod



O. V. Kovalishena
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



D. K. Lazarev
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



References

1. World health statistics 2024: monitoring health for the SDGs, Sus- tainable Development Goals // Geneva: World Health Organization. – 2024. Licence: CC BY-NC-SA 3.0 IGO.

2. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) – Annual Epidemiological Report, 2023. Stockholm: ECDC, 2024.

3. Kharkwal G.B., Sharma S.K., Huang Y.Y., et al. Photodynamic therapy for infections: clinical applications. Lasers Surg Med, 2011, Vol. 43(7), рр. 755-67. https://doi.org/10.1002/lsm.21080.

4. Semyonov D.Yu., Vasil’ev Yu.L., Dydykin S.S. et al. Antimicrobial and antimycotic photodynamic therapy (review of literature). Biomedi- cal, 2021, Vol. 10(1), рр. 25-31. https://doi.org/10.24931/2413-9432-2021-10-1-25-31

5. Mishutina O.L., Volchenkova G.V., Kovaleva N.S., et al. Photodynamic therapy in dentistry (literature review). Smolensk Medical Almanac, 2019, Vol. 3, рр. 102-111. (In Russian) – EDN PMCRWJ.

6. Risovannaya O.N., Andreasyan T.Sh. Photodynamic therapy – mod- ern views and innwovations in dentistry. Medical alphabet, 2024, Vol. (18), рр. 78-84. (In Russian) https://doi.org/10.33667/2078- 5631-2024-18-78-84

7. Morgado L.F., Travolo A.R.F., Muehlmann L.A., et al. Photodynamic Therapy treatment of onychomycosis with Aluminium-Phthalo-cyanine Chloride nanoemulsions: A proof of concept clinical trial. J Photochem Photobiol B., 2017, Vol. 173, рр. 266-270. https://doi. org/10.1016/j.jphotobiol.2017.06.010.

8. La Selva A., Negreiros R.M, Bezerra D.T., et al. Treatment of herpes labialis by photodynamic therapy: Study proto- col clinical trial (SPIRIT compliant). Medicine (Baltimore), 2020, Vol. 99 (12), рр. e19500. https://doi.org/10.1097/ MD.0000000000019500.

9. Galinari C.B., Conrado P.C.V., Arita G.S., et al. Nanoencapsulated hypericin in P-123 associated with photodynamic therapy for the treatment of dermatophytosis. J Photochem Photobiol B., 2021, Vol. 215, рр. 112103. https://doi.org/10.1016/j.jphotobiol.2020.112103.

10. Maldonado A.E., Osorio Peralta M.O., Moreno V.A., et al. Effec- tiveness of Photodynamic Therapy in Elimination of HPV-16 and HPV-18 Associated with CIN I in Mexican Women. Photochem Photobiol, 2017, Vol. 93(5), рр.1269-1275. https://doi.org/10.1111/ php.12769.

11. Shanazarov N.A., Zinchenko S.V., Kisikova S.D., et al. Photodynamic therapy in the treatment of HPV-associated cervical cancer: mecha- nisms, challenges and future prospects. Biomedical Photonics, 2024, Vol. 13(1), рр. 47-55. https://doi.org/10.24931/2413-9432-2023-13-1-47-55

12. Streltsova O.S., Antonian A.E., Sedova E.S., et al. Method of treating patients with chronic recurrent bacterial cystitis. Patent RU2820135 C1. 29.05.2024. EDN ITHDET.

13. Logunova E.V., Egorov V.I., Nasedkin A.N., et al. The use of the enzymes for the enhancement of the effectiveness of antimicro- bial photodynamic treatment of the patients presenting with chronic tonsillitis. Russian Bulletin of Otorhinolaryngology, 2016, Vol. 81(2), рр. 44-48. (In Russian) https://doi.org/10.17116/oto- rino201681244-48

14. Plavskii V.Y., Plavskaya L.G., Dudinova O.N., et al. Endogenous Photoacceptors Sensitizing Photobiological Reactions in Somatic Cells. Zhurnal Prikladnoii Spektroskopii, 2023, Vol. 90(2), рр. 239-252. (In Russian) https://doi.org/10.47612/0514-7506-2023-90-2- 239-252

15. Guffey J.S, Payne W., Jones T., et al. Evidence of resistance develop- ment by Staphylococcus aureus to an in vitro, multiple stage ap- plication of 405 nm light from a supraluminous diode array. Pho- tomed Laser Surg, 2013, Vol. 31, рр. 179-82. https://doi.org/10.1089/ pho.2012.3450

16. Amin R.M., Bhayana B., Hamblin M.R., et al. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excita- tion of endogenous porphyrins: In vitro and in vivo studies. La- sers Surg Med, 2016, Vol. 48, рр. 562-568. https://doi.org/10.1002/ lsm.22474

17. Pieranski M., Sitkiewicz I., Grinholc M. Increased photoinac- tivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments. Free Radic Biol Med, 2020, Vol. 160, рр. 657-69. https://doi.org/10.1016/j.freerad- biomed.2020.09.003

18. Rapacka-Zdonczyk A., Wozniak A., Pieranski M., et al. Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Sci Rep, 2019, Vol. 9, рр.1-18. https://doi.org/10.1038/s41598-019- 45962-x

19. Tiganova I.G., Makarova E.A., Meerovich G.A., et al. Photodynamic inactivation of pathogenic bacteria in biofilms using new synthetic bacteriochlorin derivatives. Biomedical Photonics, 2017, Vol. 6(4), рр. 27-36. (In Russian) https://doi.org/10.24931/2413-9432-2017-6-4-27-36

20. Lebedeva N.S., Gubarev Y.A., Koifman M.O., et al. The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Mol- ecules, 2020, Vol. 2325(19), рр. 4368. https://doi.org/10.3390/mol- ecules25194368.

21. Lebedeva N. Sh., Koifman O. I. Supramolecular Systems Based on Macrocyclic Compounds with Proteins. Application Prospects. J. Bioorg. Chem. 2022, Vol. 48(1), рр. 3-31. (In Russian) https://doi. org/10.1134/S1068162022010071

22. Rapacka-Zdończyk A., Woźniak A., Michalska K., et al. Factors Deter- mining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne), 2021, Vol. 8, рр. 642609. https:// doi.org/10.3389/fmed.2021.642609

23. Kiselev A.N., Lebedev M.A., Syrbu S.A., et al. Synthesis and study of water-soluble asymmetric cationic porhyrins as potential photoin- activators of pathogens. Russian Chemical Bulletin. 2022, Vol. 12, рр. 2691-2700. (In Russian)

24. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0, 2023. http://www.eucast.org.


Review

For citations:


Kvashnina D.V., Shirokova I.Yu., Belyanina N.A., Syrbu S.A., Lebedeva N.Sh., Boeva Zh.V., Burashnikova A.A., Gorshkova E.N., Razzorenova E.A., Kovalishena O.V., Lazarev D.K. Study of accumulation of water-soluble asymmetric cationic porphyrins in gram-positive wound infection pathogens during photodynamic inactivation. Biomedical Photonics. 2025;14(2):4-11. https://doi.org/10.24931/2413-9432-2025-14-2-4-11

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)