Preview

Biomedical Photonics

Advanced search

Local scattering anisotropy of the skin as a possible factor of fluorescence borders distortion of neoplasms

https://doi.org/10.24931/2413-9432-2025-14-2-12-20

Abstract

The use of protoporphyrin IX fluorescence imaging in skin tumors is limited by the complexity of light propagation in tissues. A non-invasive scat- tering anisotropy test (comparison of the fluorescence pattern of a tumor with that of a point source applied to the same spot) would be useful in distinguishing between cases of subsurface tumor growth and local fluorescence pattern distortions. However, the knowledge is missing of whether the distribution from an external light source would be representative. The experiment described here addressed the correlation between patterns in which light is dispersed from an external and an internal source within the same area of the skin. A pig’s head was chosen as the model. Four zones of interest were identified, all different in optical properties. The wavelength of the light source was selected as to simulate the PpIX fluorescence. The correspondence of light distribution patterns was quantified using the correlation method. The results have clearly demon- strated the strong relationship between the fluorescence distribution pattern of a tumor and the condition/topography of the surrounding tissues and proved the possibility of using an external light source to assess the local scattering anisotropy of the skin in vivo.

About the Authors

N. P. Kiryushchenkova
M.M. Krasnov Research Institute of Eye Diseases
Russian Federation

Moscow



I. A. Novikov
M.M. Krasnov Research Institute of Eye Diseases; Prokhorov General Physics Institute of Russian Academy of Sciences
Russian Federation

Moscow



References

1. Kaprin A.D., Starinsky V.V., Shakhzadova A.O. eds. Malignant neoplasms in Russia in 2020 (morbidity and mortality). M.: P.A. Herzen Moscow On- cology Research Institute. – 2021. (In Russ.)

2. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, Vol. 71, рр. 209-249. https://doi.org/10.3322/caac.21660

3. Peris K., Fargnoli M.C., Garbe C., Kaufmann R., Bastholt L., Seguin N.B., Bataille V., Marmol V. D., Dummer R., Harwood C.A., Hauschild A., Höller C., Haedersdal M., Malvehy J., Middleton M.R., Morton C.A., Nagore E., Stratigos A.J., Szeimies R.M., Tagliaferri L., Trakatelli M., Zalaudek I., Eg- germont A., Grob J.J. Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines. Eur J Cancer, 2019, Vol. 118, рр. 10-34.

4. Vornicescu C., Șenilă S.C., Bejinariu N.I., Vesa Ș.C., Boșca A.B., Chirilă D.N., MelincoviciC.S., Sorițău O., Mihu C.M. Predictive factors for the recurrence of surgically excised basal cell carcinomas: A retrospective clinical and immunopathological pilot study. Experimental and Thera- peutic Medicine, 2021, Vol. 22(5), рр.1336. https://doi.org/10.3892/ etm.2021.10771

5. Policard A. Etudes sur les aspects offerts par des tumeurs experimen- tales ex aminées a la lumière de Wood. C R Soc Biol, 1924, Vol. 91, рр. 1423-1428.

6. GalkinaE.M., Utz S.R. Fluorescence diagnosis in dermatology (review). Saratov Journal of Medical Scientific Research, 2013, Vol. 9(3), рр. 566-572. (In Russ.)

7. Wizenty J., Schumann T., Theil, D., Stockmann M., Pratschke J., Tacke F., Aigner F., Wuensch T. Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues. Molecules, 2020, Vol. 25(9), рр. 2095.

8. Croce A.C., Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem, 2014, Vol. 58. – P. 2461.

9. Vo-Dinh T. Biomedical photonics handbook: biomedical diagnostics. CRC press. Boca Raton. – 2014.

10. McNicholas K., MacGregor M.N., Gleadle J.M. In order for the light to shine so brightly, the darkness must be present-why do cancers fluo- resce with 5-aminolaevulinic acid? Br J Cancer, 2019, Vol. 121(8), рр. 631-639. https://doi.org/10.1038/s41416-019-0516-4.

11. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabo- lism. Cell Metab, 2016, Vol. 23(1), рр. 27-47. https://doi.org/10.1016/j. cmet.2015.12.006.

12. Potapov A.A., Goriaĭnov S.A., Loshchenov V.B., Savel'eva T.A., Gavrilov A.G., Okhlopkov V.A., Zhukov V.Iu., Zelenkov P.V., Gol'bin D.A., Shurkhaĭ V.A., Shishkina L.V., Grachev P.V., Kholodtsova M.N., Kuz'min S.G., Voro- zhtsov G.N., Chumakova A.P. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas. ZhVoprNeirokhirIm N. N. Burdenko, 2013, Vol. 77(2), рр. 3-10. (In Eng., Russ.)

13. Na R., Stender I.M., Wulf H.C. Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm Venereol, 2001, Vol. 81, рр. 246-249. https:// doi.org/10.1080/00015550152572859

14. Hegyi J., Hegyi V., New developments in fluorescence diagnostics. In: Michael R. Hamblin, Pinar Avci, Gaurav K. Gupta, eds. Imaging in Derma- tology. Academic Press, 2016, рр. 89-94. https://doi.org/10.1016/B978- 0-12-802838-4.00009-1

15. Grusha Ia.O., Kiryushchenkova N.P., Novikov I.A., Fedorov A.A., Ismailova D.S. Histological verification of autofluorescence borders of periorbital skin tumors. Vestnik Oftalmologii, 2020, Vol. 136(6), рр. 32-41. (In Russ.) https://doi.org/10.17116/oftalma202013606132

16. Kienle A., Foschum F., Hohmann A. Light propagation in struc- tural anisotropic media in the steady-state and time domains. Phys. Med. Biol, 2013, Vol. 58(17), рр. 6205. https://doi.org/10.1088/0031- 9155/58/17/6205

17. Jacques S.L. Optical properties of biological tissues: a review. Phys Med Biol, 2013, Vol. 58(11), рр. 37-61. https://doi.org/0.1088/0031- 9155/58/11/R37.

18. Nickell S. et al. Anisotropy of light propagation in human skin. Phys. Med. Biol, 2000, Vol. 45, рр. 2873-2886.

19. Tuchin V.V. Lasers and optical fibers in biomedical studies (2d ed.). Fiz- matlit, 2010 (In Russ.)

20. Tuchin V.V. Optical biomedical diagnosis. Izvestiya of Saratov Uni- versity. Physics, 2005, Vol. 1(5), рр. 39-53. (In Russ.) https://doi. org/10.18500/1817-3020-2005-5-1-39-53.

21. Anderson RR, Parrish JA. The optics of human skin. J Invest Derma- tol, 1981, Vol. 77 (1), рр. 13-9. https://doi.org/10.1111/1523-1747. ep12479191.

22. Colas V., Daul C., Khairallah G., Amouroux M., Blondel W. Spatially re- solved diffuse reflectance and autofluorescence photon depth dis- tribution in human skin spectroscopy: a modeling study. Proc. SPIE 11553, Optics in Health Care and Biomedical Optics X, 115531A. https:// doi.org/10.1117/12.2575069

23. Brancaleon L., Durkin A.J., Tu J.H., Menaker G., Fallon J.D., Kollias N. In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer. Photo- chemistry and Photobiology, 2001, Vol. 73(2), рр. 178-183. https://doi. org/10.1562/0031-8655(2001)073

24. Masuda Y., Ogura Y., Inagaki Y., Yasui T., Aizu Y. Analysis of the influence of collagen fibres in the dermis on skin optical reflectance by Monte Carlo simulation in a nine-layered skin model. Skin Res Technol, 2018, Vol. 24, рр. 248-255. https://doi.org/10.1111/srt.12421

25. Smirnova O.D., Rogatkin D., Litvinova K. Collagen as in vivo quantita- tive fluorescent biomarkers of abnormal tissue changes. J. Innov. Opt. Health Sci, 2012, Vol. 05(2), рр.1250010.

26. Yagi R., Kawabata S., Ikeda N. et al. Intraoperative 5-aminolevulinic acid- induced photodynamic diagnosis of metastatic brain tumors with his- topathological analysis. World J SurgOnc, 2017, Vol. 15, рр.179. https:// doi.org/10.1186/s12957-017-1239-8

27. Redondo P., Marquina M., Pretel M., Aguado L., Iglesias M.E. Methyl- ALA-Induced Fluorescence in Photodynamic Diagnosis of Basal Cell Carcinoma Prior to Mohs Micrographic Surgery. ArchDermatol, 2008, Vol. 144(1), рр.115-117. https://doi.org/10.1001/archderma- tol.2007.3

28. Kiryushchenkova N.P., Grusha Y., The use of autofluorescence diagnos- tics in monitoring and evaluating the effectiveness of local chemo- therapy for superficial basal cell carcinoma of the skin (clinical case). Modern technologies in ophthalmology, 2020, Vol. 4 (35), рр.162-163. (In Russ.) https://doi.org/10.25276/2312-4911-2020-4-162-163

29. Hefti M., von Campe G., Moschopulosa M., Siegnerb A., Looserc H., Landolt H. 5-aminolaevulinic acid-induced protoporphyrin IX fluo- rescence in high-grade glioma surgery. SWISS MED WKLY, 2008, Vol. 138(11-12), рр.180-185.

30. Sapronov M.V., Skornyakova N.M. Computer visualization of Rayleigh scattering indicatrix in dynamic. Scientific visualization, 2017, Vol.3(9), рр.42-53. (In Russ.)

31. Kalyagina N., Loschenov V., Wolf D., Daul C., Blondel W., Savelieva T. Ex- perimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical mod- el of a bladder wall. Applied Physics B, 2011, Vol. 105. (3), рр. 631-639. doi:10.1007/s00340-011-4678-x

32. Colas V., Amouroux M., Daul C., Perrin-Mozet C., Blondel W. Compara- tive study of optical properties estimation on liquid optical phantoms using spatially-resolved diffuse reflectance spectroscopy and double integrating spheres methods. Proc. SPIE 12147. – Tissue Optics and Pho- tonics II, рр. 1214705. https://doi.org/10.1117/12.2621496


Review

For citations:


Kiryushchenkova N.P., Novikov I.A. Local scattering anisotropy of the skin as a possible factor of fluorescence borders distortion of neoplasms. Biomedical Photonics. 2025;14(2):12-20. https://doi.org/10.24931/2413-9432-2025-14-2-12-20

Views: 53


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)