Preview

Biomedical Photonics

Advanced search

On the dependence of fluorescence intensity on the concentration of photosensitizer solutions

https://doi.org/10.24931/2413-9432-2025-14-2-21-26

Abstract

When studying the optical properties of photosensitizers, it is assumed that their fluorescence intensity depends linearly on concentration. How- ever, there are many factors that need to be taken into account. At low photosensitizer concentrations, a part of the excitation radiation energy is lost beyond the volume of the excited solution, and due to local or one-directional registration, a large part of isotropically emitted fluorescence radiation is also not registered. At higher concentrations, the loss of fluorescence light increases due to its partial re-absorption by the photosensi- tizer molecules and subsequent isotropic re-emission with quantum yield much lower than 1, and further increase of concentration leads to partial aggregation of PS, and to the following decrease of effective fluorescence. At high absorption, fluorescence is excited only in a limited volume close to the excitation radiation source, leading to higher significance of light registration geometry. This should be taken into account in fluorescence diagnostics and navigation using this characteristic.

About the Authors

G. A. Meerovich
Prokhorov General Physics Institute of Russian Academy of Sciences
Russian Federation

Moscow



I. D. Romanishkin
Prokhorov General Physics Institute of Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
Russian Federation

Moscow



E. V. Akhlyustina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow



V. B. Loschenov
Prokhorov General Physics Institute of Russian Academy of Sciences;
Russian Federation

Moscow



References

1. Loschenov V.B., Konov V.I., Prokhorov A.M., Photodynamic Ther- apy and Fluorescence Diagnostics. Laser Physics, 2000, Vol. 10, рр.11801207.

2. Budko A.P., Deichman Z.G., Meerovich G.A., Borisova L.M., Мeerovich I.G., Lantsova A.V., Yu K.N., Kulbachevskaya N.Yu., Study of pharmacokinetics of liposomal photosensitiser based on hydroxyaluminium tetra-3-phenylthiophthalocyanine on mice. Biomedical Photonics, 2019, Vol. 7, рр.16-22. https://doi. org/10.24931/2413-9432-2018-7-4-16-22.

3. Meerovich I.G., Kazachkina N.I., Savitsky A.P., Investigation of the effect of photosensitizer Tiosense on the tumor model mel Kor-TurboRFP expressed red fluorescent protein. Russ J Gen Chem, 2015, Vol. 85, рр. 274-279. https://doi.org/10. 1134/ S1070363215010429.

4. Savitsky A.P., Meerovich I.G., Zherdeva V.V., Arslanbaeva L.R., Bu- rova O.S., Sokolova D.V., Treshchalina E.M., Baryshnikov A.Y., Fiks I.I., Orlova A.G., Kleshnin M.S., Turchin I.V., Sergeev A.M., Three- Dimensional In Vivo Imaging of Tumors Expressing Red Fluores- cent Proteins, in: R.M. Hoffman (Ed.). In Vivo Cellular Imaging Using Fluorescent Proteins, Humana Press, Totowa, NJ, 2012, рр. 97-114. https://doi.org/10.1007/978-1-61779-797-2_7.

5. Savelieva T.A., Kuryanova M.N., Akhlyustina E.V., Linkov K.G., Meerovich G.A., Loschenov V.B., Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties. Front. Optoelectron, 2020, Vol. 13, рр. 360-370. https://doi.org/10.1007/s12200-020-1094-z.

6. Udeneev A. M. et al. Photo and spectral fluorescence analysis of the spinal cord injury area in animal models, Biomedical Photonics, 2023, Vol. 3, pp. 15-20. https://doi.org/10.24931/2413-9432-2023-12-3-16-20

7. Mironov A.N., ed., Guidelines for conducting preclinical studies of drugs. Grif, 2012.

8. Meerovich G., Romanishkin I., Akhlyustina E., Strakhovskaya M., Kogan E., Angelov I., Loschenov V., Borisova E., Photodynamic Ac- tion in Thin Sensitized Layers: Estimating the Utilization of Light Energy. J-BPE, 2021, Vol. 7, рр. 040301. https://doi.org/10.18287/ JBPE21.07.040301.

9. Meerovich G.A., Akhlyustina E.V., Tiganova I.G., Lukyanets E.A., Makarova E.A., Tolordava E.R., Yuzhakova O.A., Romanishkin I.D., Philipova N.I., Zhizhimova Yu.S., Romanova Yu.M., Loschenov V.B., Gintsburg A.L., Novel Polycationic Photosensitizers for An- tibacterial Photodynamic Therapy, in: G. Donelli (Ed.). Advances in Microbiology, Infectious Diseases and Public Health, Springer International Publishing, Cham, 2019, рр. 1-19. https://doi. org/10.1007/5584_2019_431.

10. Makarov D.A., Kuznetsova N.A., Yuzhakova O.A., Savvina L.P., Kaliya O.L., Lukyanets E.A., Negrimovskii V.M., Strakhovskaya M.G., Effects of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocya- nine polycations. Russ. J. Phys. Chem, 2009, Vol. 83, рр. 1044-1050. https://doi.org/10.1134/S0036024409060326.

11. Silva E.F.F., Serpa C., Dąbrowski J.M., Monteiro C.J.P., Formosinho S.J., Stochel G., Urbanska K., Simões S., Pereira M.M., Arnaut L.G., Mechanisms of Singlet-Oxygen and Superoxide-Ion Generation by Porphyrins and Bacteriochlorins and their Implications in Pho- todynamic Therapy. Chem. Eur. J., 2010, Vol. 16, рр. 9273-9286. https://doi.org/10.1002/chem.201000111.

12. Paxton F., Solid Angle Calculation for a Circular Disk. Review of Scientific Instruments, 1959, Vol. 30, рр. 254-258. https://doi. org/10.1063/1.1716590.

13. Makarov V.I., Pominova D.V., Ryabova A.V., Romanishkin I.D., Voitova A.V., Steiner R.W., Loschenov V.B., Theranostic Properties of Crystalline Aluminum Phthalocyanine Nanoparticles as a Pho- tosensitizer. Pharmaceutics, 2022, Vol. 14, рр. 2122. https://doi. org/10.3390/pharmaceutics14102122.

14. Lacey J.A., Phillips D., Fluorescence lifetime measurements of di- sulfonated aluminium phthalocyanine in the presence of microbi- al cells. Photochem Photobiol Sci, 2002, Vol. 1, рр. 378-383. https:// doi.org/10.1039/b108831a.

15. Castano A.P., Demidova T.N., Hamblin M.R., Mechanisms in pho- todynamic therapy: Part three-Photosensitizer pharmacokinet- ics, biodistribution, tumor localization and modes of tumor de- struction. Photodiagnosis Photodyn Ther, 2005, Vol. 2, рр. 91-106. https://doi.org/10.1016/S1572-1000(05)00060-8.

16. Tominaga T.T., Yushmanov V.E., Borissevitch I.E., Imasato H., Ta- bak M., Aggregation phenomena in the complexes of iron tetra- phenylporphine sulfonate with bovine serum albumin. Journal of Inorganic Biochemistry, 1997, Vol. 65, рр. 235-244. https://doi. org/10.1016/S0162-0134(96)00137-7.


Review

For citations:


Meerovich G.A., Romanishkin I.D., Akhlyustina E.V., Loschenov V.B. On the dependence of fluorescence intensity on the concentration of photosensitizer solutions. Biomedical Photonics. 2025;14(2):21-26. https://doi.org/10.24931/2413-9432-2025-14-2-21-26

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)