Preview

Biomedical Photonics

Advanced search

Automatization of planning and control of photodynamic therapy of gastrointestinal organs

https://doi.org/10.24931/2413-9432-2025-14-2-40-54

Abstract

The main aspects of automatization of photodynamic therapy (PDT) planning include several key areas related to improving accuracy, efficiency and personalization of treatment. Mathematical modeling of light propagation makes it possible to calculate the distribution of light energy in biotissues taking into account their optical characteristics and pathology geometry. At the same time the use of optical diagnostic methods allows not only to plan but also to control in real time the photodynamic effect with parameters adjustment depending on the degree of photosensitizer photobleaching and the hemoglobin oxygen saturation, as well as to determine the optical properties of tissues exactly in the exposure area. These methods also make it possible to personalize the effect, since it is based not on a priori information about averaged properties of organs and tis- sues, but on dynamically changing and measurable parameters. The use of photodynamic therapy for tumor diseases of the gastrointestinal tract has shown effectiveness as an adjunct to surgical treatment, as well as for tumors of small size and as a method of palliative treatment. At the same time from the point of view of light propagation in tissues the walls of gastrointestinal tract organs represent rather complex multilayer structures, optical properties of which depend on physiological state and pathologies developing in the organ. These circumstances make the task of automation of planning of photodynamic therapy of GI organs urgent and nontrivial. In this paper we review the methods that solve this problem.

About the Authors

A. A. Krivetskaya
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow



T. A. Savelieva
Prokhorov General Physics Institute of the Russian Academy of Sciences; Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI
Russian Federation

Moscow



D. M. Kustov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Moscow



V. V. Levkin
Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University
Russian Federation

Moscow



S. S. Kharnas
Department of Faculty Surgery No. 1, I.M. Sechenov First Moscow State Medical University
Russian Federation

Moscow



V. B. Loschenov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI
Russian Federation

Moscow



References

1. Sun B., Li W., Liu N. Curative effect of the recent Porfimer sodium photodynamic adjuvant treatment on young patients with advanced colorectal cancer. Oncol. Lett, 2016, vol. 11, pp. 2071– 2074. https://doi.org/ 10.3892/ol.2016.4179.

2. McGarrity T., Peiffer L., Granville D., Carthy C., Levy J., Khandelwal M., Hunt D. Apoptosis associated with esophageal adenocarcinoma: influence of photodynamic therapy. Cancer Lett., 2001, vol. 163, pp. 33–41. https://doi.org/10.1016/S0304-3835(00)00663-7.

3. Wolfsen H.C., Woodward T.A., Raimondo M. Photodynamic therapy for dysplastic Barrett esophagus and early esophageal adenocarcinoma. Mayo Clin. Proc., 2002, vol. 77, no. 11, pp. 1176–1181. https://doi.org/10.4065/77.11.1176.

4. Liu H. Editorial: dosimetry study in photodynamic therapy for diagnosis, precision treatment and treatment evaluation. Front. Phys., 2020, vol. 8. https://doi.org/ 10.3389/fphy.2020.588484.

5. Overholt B.F., Wang K.K., Burdick J.S. et al. Five-year efficacy and safety of photodynamic therapy with Porfimer sodium in Barrett's high-grade dysplasia. Gastrointest. Endosc., 2007, vol. 66, no. 3, pp. 460–468. https://doi.org/10.1016/j.gie.2006.12.037.

6. Overholt B.F., Panjehpour M., Halberg D.L. Photodynamic therapy for Barrett's esophagus with dysplasia and/or early stage carcinoma: long-term results. Gastrointest. Endosc., 2003, vol. 58, no. 2, pp. 183–188. https://doi.org/ 10.1067/mge.2003.327.

7. Wolfsen H.C., Hemminger L.L., Wallace M.B., DeVault K.R. Clinical experience of patients undergoing photodynamic therapy for Barrett's dysplasia or cancer. Aliment Pharmacol. Ther., 2004, vol. 20, pp. 1125–1131. https://doi.org/10.1111/j.1365-2036.2004.02209.x.

8. Buttar N.S., Wang K.K., Lutzke L.S., Krishnadath K.K., Anderson M.A. Combined endoscopic mucosal resection and photodynamic therapy for esophageal neoplasia within Barrett's esophagus. Gastrointest. Endosc., 2001, vol. 54, no. 6, pp. 682–688. https://doi. org/ 10.1067/gien.2001.0003.

9. Yachimski P., Puricelli W.P., Nishioka N.S. Patient predictors of histopathologic response after photodynamic therapy of Barrett's esophagus with high-grade dysplasia or intramucosal carcinoma. Gastrointest. Endosc., 2009, vol. 69, no. 2, pp. 205–212. https://doi. org/ 10.1016/j.gie.2008.05.032.

10. Dunn J.M., Mackenzie G.D., Banks M.R. et al. A randomised controlled trial of ALA vs. Porfimer sodium photodynamic therapy for high-grade dysplasia arising in Barrett’s oesophagus. Lasers Med. Sci., 2013, vol. 28, pp. 707–715. https://doi.org/10.1007/s10103-012-1132-1.

11. Mackenzie G.D., Jamieson N.F., Novelli M.R. et al. How light dosimetry influences the efficacy of photodynamic therapy with 5-aminolaevulinic acid for ablation of high-grade dysplasia in Barrett's esophagus. Lasers Med. Sci., 2008, vol. 23, no. 2, pp. 203–210. https://doi.org/ 10.1007/s10103-007-0473-7.

12. Pech O., Gossner L., May A. et al. Long-term results of photodynamic therapy with 5-aminolevulinic acid for superficial Barrett's cancer and high-grade intraepithelial neoplasia. Gastrointest. Endosc., 2005, vol. 62, no. 1, pp. 24–30. https://doi.org/10.1016/s0016-5107(05)00333-0.

13. Tan W.C., Fulljames C., Stone N., Dix A.J., Shepherd N., Roberts D.J., Brown S.B., Krasner N., Barr H. Photodynamic therapy using 5-aminolaevulinic acid for oesophageal adenocarcinoma associated with Barrett's metaplasia. J. Photochem. Photobiol. B, 1999, vol. 53, no. 1-3, pp. 75–80. https://doi.org/10.1016/s1011-1344(99)00129-3.

14. Kashtan H., Konikoff F., Haddad R., Skornick Y. Photodynamic therapy of cancer of the esophagus using systemic aminolevulinic acid and a non laser light source: a phase I/II study. Gastrointest. Endosc., 1999, vol. 49, no. 6, pp. 760–764. https://doi.org/10.1016/s0016-5107(99)70297-x.

15. Etienne J., Dorme N., Bourg-Heckly G., Raimbert P., Fléjou J.F. Photodynamic therapy with green light and m-tetrahydroxyphenyl chlorin for intramucosal adenocarcinoma and high-grade dysplasia in Barrett's esophagus. Gastrointest. Endosc., 2004, vol. 59, no. 7, pp. 880–889. https://doi.org/10.1016/s0016-5107(04)01271-4.

16. Lovat L.B., Jamieson N.F., Novelli M.R., Mosse C.A., Selvasekar C., Mackenzie G.D., Thorpe S.M., Bown S.G. Photodynamic therapy with m-tetrahydroxyphenyl chlorin for high-grade dysplasia and early cancer in Barrett's columnar lined esophagus. Gastrointest. Endosc., 2005, vol. 62, no. 4, pp. 617–623. https://doi.org/10.1016/j.gie.2005.04.043.

17. Gossner L., May A., Sroka R., Ell C. A new long-range through- the-scope balloon applicator for photodynamic therapy in the esophagus and cardia. Endoscopy, 1999, vol. 31, no. 5, pp. 370–376. https://doi.org/10.1055/s-1999-31.

18. Javaid B., Watt P., Krasner N. Photodynamic therapy (PDT) for oeso- phageal dysplasia and early carcinoma with mTHPC (m-tetra- hydroxyphenyl chlorin): a preliminary study. Lasers Med. Sci., 2002, vol. 17, no. 1, pp. 51–56. https://doi.org/10.1007/s10103-002-8266-5.

19. Yano T., Muto M., Minashi K., Ohtsu A., Yoshida S. Photodynamic therapy as salvage treatment for local failures after definitive chemoradiotherapy for esophageal cancer. Gastrointest. Endosc., 2005, vol. 62, no. 1, pp. 31–36. https://doi.org/10.1016/s0016-5107(05)00545-6.

20. Minamide T., Yoda Y., Hori K., Shinmura K., Oono Y., Ikematsu H., Yano T. Advantages of salvage photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Surg. Endosc., 2020, vol. 34, no. 2, pp. 899–906. https://doi.org/ 10.1007/s00464-019-06846-3.

21. Ishida N., Osawa S., Miyazu T., Kaneko M., Tamura S., Tani S., Yamade M., Iwaizumi M., Hamaya Y., Furuta T., Sugimoto K. Photodynamic Therapy Using Talaporfin Sodium for Local Failure after Chemoradiotherapy or Radiotherapy for Esophageal Cancer: A Single Center Experience. J. Clin. Med., 2020, vol. 9, no. 5, p. 1509. https://doi.org/ 10.3390/jcm9051509.

22. Nava H.R., Allamaneni S.S., Dougherty T.J., Cooper M.T., Tan W., Wilding G., Henderson B.W. Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with Barrett's esophagus. Lasers Surg. Med., 2011, vol. 43, pp. 705–712. https://doi.org/10.1002/lsm.21112.

23. Tanaka T., Matono S., Nagano T., Murata K., Sueyoshi S., Yamana H., Shirouzu K., Fujita H. Photodynamic therapy for large superficial squa- mous cell carcinoma of the esophagus. Gastrointest. Endosc., 2011, vol. 73, no. 1, pp. 1–6. https://doi.org/10.1016/j.gie.2010.08.049.

24. Yano T., Muto M., Minashi K., Iwasaki J., Kojima T., Fuse N., Doi T., Kaneko K., Ohtsu A. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: A phase II study. Int. J. Cancer, 2012, vol. 131, pp. 1228–1234. https://doi.org/10.1002/ijc.27320.

25. Yano T., Muto M., Yoshimura K. et al. Phase I study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer. Radiat. Oncol., 2012, vol. 7, p. 113. https://doi.org/10.1186/1748-717X-7-113.

26. Lindenmann J., Matzi V., Neuboeck N., Anegg U., Baumgartner E., Maier A., Smolle J., Smolle-Juettner F.M. Individualized, multimodal palliative treatment of inoperable esophageal cancer: Clinical impact of photodynamic therapy resulting in prolonged survival. Lasers Surg. Med., 2012, vol. 44, pp. 189–198. https://doi.org/10.1002/lsm.22006.

27. Yano T., Kasai H., Horimatsu T., Yoshimura K., Teramukai S., Morita S., Tada H., Yamamoto Y., Kataoka H., Kakushima N., Ishihara R., Isomoto H., Muto M. et al. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget, 2017, vol. 8, pp. 22135–22144.

28. Foroulis Ch.N., Thorpe J.A.C. Photodynamic therapy (PDT) in Barrett's esophagus with dysplasia or early cancer. Eur. J. Cardiothorac. Surg., 2006, vol. 29, no. 1, pp. 30–34. https://doi.org/10.1016/j.ejcts.2005.10.033.

29. Gray J., Fullarton G.M. Long term efficacy of photodynamic therapy (PDT) as an ablative therapy of high grade dysplasia in Barrett's oesophagus. Photodiagnosis Photodyn. Ther., 2013, vol. 10, no. 4, pp. 561–565. https://doi.org/ 10.1016/j.pdpdt.2013.06.002.

30. Pacifico R.J., Wang K.K., Wongkeesong L.M., Buttar N.S., Lutzke L.S. Combined endoscopic mucosal resection and photodynamic therapy versus esophagectomy for management of early adenocarcinoma in Barrett's esophagus. Clin. Gastroenterol. Hepatol., 2003, vol. 1, no. 4, pp. 252–257.

31. Hatogai K., Yano T., Kojima T., Onozawa M., Daiko H., Nomura S., Yoda Y., Doi T., Kaneko K., Ohtsu A. Salvage photodynamic therapy for local failure after chemoradiotherapy for esophageal squamous cell carcinoma. Gastrointest. Endosc., 2016, vol. 83, no. 6, pp. 1130–1139. e3. https://doi.org/10.1016/j.gie.2015.11.016.

32. Lightdale C.J., Heier S.K., Marcon N.E., McCaughan J.S. Jr, Gerdes H., Overholt B.F., Sivak M.V. Jr, Stiegmann G.V., Nava H.R. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter randomized trial. Gastrointest. Endosc., 1995, vol. 42, no. 6, pp. 507–512. https://doi.org/ 10.1016/s0016-5107(95)70002-1.

33. Litle V.R., Luketich J.D., Christie N.A., Buenaventura P.O., Alvelo-Rivera M., McCaughan J.S., Nguyen N.T., Fernando H.C. Photodynamic therapy as palliation for esophageal cancer: experience in 215 patients. Ann. Thorac. Surg., 2003, vol. 76, no. 5, pp. 1687–1693. https://doi.org/10.1016/s0003-4975(03)01299-2.

34. Prasad G.A., Wang K.K., Buttar N.S., Wongkeesong L.M., Lutzke L.S., Borkenhagen L.S. Predictors of stricture formation after photodynamic therapy for high-grade dysplasia in Barrett's esophagus. Gastrointest. Endosc., 2007, vol. 65, no. 1, pp. 60–66. https://doi.org/ 10.1016/j.gie.2006.04.028.

35. Nakamura T., Oinuma T. Usefulness of photodynamic diagnosis and therapy using talaporfin sodium for an advanced-aged patient with inoperable gastric cancer. Laser Ther., 2014, vol. 23, no. 3, pp. 201–210. https://doi.org/ 10.5978/islsm.14-OR-16.

36. Pogue B.W., Sheng C., Benevides J., Forcione D., Puricelli B., Nishioka N., Hasan T. Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus. J. Biomed. Opt., 2008, vol. 13, no. 3, p. 034009. https://doi.org/ 10.1117/1.2937476.

37. Loshchenov M., Levkin V., Kalyagina N., Linkov K., Kharnas S., Efendiev K., Kharnas P., Loschenov V. Laser-induced fluorescence diagnosis of stomach tumor. Lasers Med. Sci., 2020, vol. 35. https:// doi.org/ 10.1007/s10103-020-02963-x.

38. Wang H.-W., Zhu T.C., Putt M.P., Solonenko M.G., Metz J.M., Dimofte A., Miles J.D., Fraker D.L., Glatstein E., Hahn S.M., Yodh A.G. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy. J. Biomed. Opt., 2005, vol. 10, no. 1, p. 014004. https://doi. org/ 10.1117/1.1854679.

39. Pfefer T.J., Schomacker K.T., Nishioka N.S. Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus. Photochem. Photobiol., 2001, vol. 73, no. 6, pp. 664–668. https://doi.org/10.1562/0031-8655(2001)073<0664:lteopt>2.0. co;2.

40. Masayuki PhD, Yoda Y., Yamamoto Y., Sunakawa H., Minamide T., Hori K., Ikematsu H., Yano T. Oxygen saturation imaging as a useful tool for visualizing the mode of action of photodynamic therapy for esophageal cancer. VideoGIE, 2020, vol. 5. https://doi.org/10.1016/j.vgie.2020.07.003.

41. Ortner M.A., Ebert B., Hein E., Zumbusch K., Nolte D., Sukowski U., Weber-Eibel J., Fleige B., Dietel M., Stolte M., Oberhuber G., Porschen R., Klump B., Hörtnagl H., Lochs H., Rinneberg H. Time gated fluorescence spectroscopy in Barrett's oesophagus. Gut., 2003, vol. 52, no. 1, pp. 28–33. https://doi.org/10.1136/gut.52.1.28.

42. Tan W.C., Fulljames C., Stone N., Dix A.J., Shepherd N., Roberts D.J., Brown S.B., Krasner N., Barr H. Photodynamic therapy using 5-aminolaevulinic acid for oesophageal adenocarcinoma associated with Barrett's metaplasia. J. Photochem. Photobiol. B, 1999, vol. 53, no. 1-3, pp. 75–80. https://doi.org/10.1016/s1011-1344(99)00129-3.

43. Standish B.A., Yang V.X., Munce N.R., Wong Kee Song L.M., Gardiner G., Lin A., Mao Y.I., Vitkin A., Marcon N.E., Wilson B.C. Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus. Gastrointest. Endosc., 2007, vol. 66, no. 2, pp. 326–333. https://doi.org/10.1016/j.gie.2007.02.040.

44. van Veen R.L., Aalders M.C., Pasma K.L., Siersema P.D., Haringsma J., van de Vrie W., Gabeler E.E., Robinson D.J., Sterenborg H.J. In situ light dosimetry during photodynamic therapy of Barrett's esophagus with 5-aminolevulinic acid. Lasers Surg. Med., 2002, vol. 31, no. 5, pp. 299–304. https://doi.org/10.1002/lsm.10129.

45. Stone N. Standardizing dosimetry in esophageal PDT: an argument for use of centering devices and removal of misleading units. Technol. Cancer Res. Treat., 2003, vol. 2, no. 4, pp. 333–338. https:// doi.org/ 10.1177/153303460300200408.

46. Veen R., Robinson D., Siersema P., Sterenborg H. The importance of in situ dosimetry during photodynamic therapy of Barrett's esophagus. Gastrointest. Endosc., 2006, vol. 64, pp. 786–788. https:// doi.org/ 10.1016/j.gie.2006.06.056.

47. Wang S., Dai X.Y., Ji S., Saeidi T., Schwiegelshohn F., Yassine A.A., Lilge L., Betz V. Scalable and accessible personalized photodynamic therapy optimization with FullMonte and PDT-SPACE. J. Biomed. Opt., 2022, vol. 27, no. 8, p. 083006.

48. Tran A.P., Jacques S. Modeling voxel-based Monte Carlo light transport with curved and oblique boundary surfaces. J. Biomed. Opt., 2020, vol. 25, no. 2, pp. 1–13.

49. Guo S., Kang J.U. Convolutional neural network-based common- path optical coherence tomography A-scan boundary-tracking training and validation using a parallel Monte Carlo synthetic dataset. Opt. Express, 2022, vol. 30, no. 14, pp. 25876–25890.

50. Cassidy J., Nouri A., Betz V., Lilge L. High-performance, robustly verified Monte Carlo simulation with FullMonte. J. Biomed. Opt., 2018, vol. 23, no. 8, pp. 1–11.

51. Woodhams J.H., Macrobert A.J., Bown S.G. The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry. Photochem. Photobiol. Sci., 2007, vol. 6, no. 12, pp. 1246–1256.

52. Efendiev K., Alekseeva P., Linkov K., Shiryaev A., Pisareva T., Gilyadova A., Reshetov I., Voitova A., Loschenov V. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer. Photodiagnosis Photodyn. Ther., 2024, vol. 45, p. 103969.

53. Gkigkitzis I., Feng Y., Yang C., Lu J.Q., Hu X. Modeling of Oxygen Transport and Cell Killing in Type-II Photodynamic Therapy. Photochem. Photobiol., 2012, vol. 88.

54. Porter J.R., Andrews B.W., Iglesias P.A. A framework for designing and analyzing binary decision-making strategies in cellular systems. Integr. Biol. (Camb.), 2012, vol. 4, no. 3, pp. 310–317.

55. Странадко E.Ф., Баранов A.B., Дуванский B.A., Ло6аков A.И., Мо- рохотов B.A., Ря6ов М.B. Фотодинамическая терапия рака 6оль- шого дуоденального сосочка и внепеченочных желчных прото- ков. Biomedical Photonics, 2020, vol. 9, no. 2, pp. 18–28. https://doi. org/ 10.24931/2413-9432-2020-9-2-18-28.

56. Wang H., Ewetse M.P., Ma C., Pu W., Xu B., He P., Wang Y., Zhu J., Chen H. The “Light Knife” for Gastric Cancer: Photodynamic Therapy. Pharmaceutics, 2023, vol. 15, no. 1, p. 101. https://doi.org/10.3390/ pharmaceutics15010101.

57. Tseimakh A.E., Mitschenko A.N., Kurtukov V.A., Shoikhet I.N., Kuleshova I.V. Effektivnost' palliativnoi fotodinamicheskoi terapii pri nerezektabel'nom rake zhelchnykh putei. Sistematichekii obzor i metaanaliz. Biomedical Photonics, 2024, vol. 13, no. 2, pp. 34–42. https://doi.org/10.24931/2413-9432-2024-13-2-34-42.

58. Celli J., Spring B., Rizvi I., Evans C., Samkoe K., Verma S., Pogue B., Hasan T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chemical Reviews, 2010, vol. 110, pp. 2795–2838. https://doi.org/10.1021/cr900300p.

59. Jarvi M.T., Niedre M.J., Patterson M.S., Wilson B.C. Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Current Status, Challenges and Future Prospects. Photochemistry and Photobiology, 2006, vol. 82, pp. 1198–1210. https://doi.org/10.1562/2006-05-03-IR-891.

60. Ong Y.H., Sheng T., Busch T.M., Zhu T.C. Reactive oxygen species explicit dosimetry for the evaluations of treatment efficiency of single and fractionated ALA-mediated photodynamic therapy. Proc. SPIE 11220, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXIX, 2020, 112200R. https://doi.org/ 10.1117/12.2546425.

61. Penjweini R., Liu B., Kim M.M., Zhu T.C. Explicit dosimetry for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy: macroscopic singlet oxygen modeling. Journal of Biomedical Optics, 2015, vol. 20, no. 12, p. 128003. https:// doi.org/ 10.1117/1.JBO.20.12.128003.

62. Jarvi M.T., Patterson M.S., Wilson B.C. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. Biophysical Journal, 2012, vol. 102, no. 3, pp. 661–671. https://doi.org/10.1016/j. bpj.2011.12.043.

63. Georgakoudi I., Foster T.H. Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry. Photochemistry and Photobiology, 1998, vol. 67, no. 6, pp. 612–625.

64. James N.S., Cheruku R.R., Missert J.R., Sunar U., Pandey R.K. Measurement of cyanine dye photobleaching in photosensitizer cyanine dye conjugates could help in optimizing light dosimetry for improved photodynamic therapy of cancer. Molecules, 2018, vol. 23, no. 8, p. 1842. https://doi.org/10.3390/molecules23081842.

65. Alekseeva P., Makarov V., Efendiev K., Shiryaev A., Reshetov I., Loschenov V. Devices and methods for dosimetry of personalized photodynamic therapy of tumors: a review on recent trends. Cancers, 2024, vol. 16, no. 13, p. 2484. https://doi.org/10.3390/ cancers16132484.

66. Sirotkina M.A., Matveev L.A., Shirmanova M.V. et al. Monitoring photodynamic therapy using optical coherence angiography. Sci. Rep., 2017, vol. 7, p. 41506. https://doi.org/10.1038/srep41506.

67. Yang W., Rastogi V., Sun H., Sharma D., Wilson B.C., Hadfield R.H., Zhu T.C. Multispectral singlet oxygen luminescent dosimetry (MSOLD) for Porfimer sodium-mediated photodynamic therapy. Proceedings of SPIE, 2023, vol. 12359, p. 1235908. https://doi.org/ 10.1117/12.2652590.

68. Romanishkin I., Ospanov A., Savelyeva T., Shugay S., Goryainov S., Pavlova G., Pronin I., Loschenov V. Multimodal method of tissue differentiation in neurooncology using Raman spectroscopy, fluorescence and diffuse reflectance spectroscopy. Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko, 2022, vol. 86, pp. 5–12. https:// doi.org/ 10.17116/neiro202286055.

69. Fang S., Wu S., Chen Z., He C., Lin L.L., Ye J. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review. TrAC Trends in Analytical Chemistry, 2024, vol. 172. https://doi.org/10.1016/j.trac.2024.117578.

70. Hamdoon Z., Jerjes W., Rashed D., Kawas S., Sattar A.A., Samsudin R., Hopper C. In vivo optical coherence tomography- guided photodynamic therapy for skin pre-cancer and cancer. Photodiagnosis and Photodynamic Therapy, 2021, vol. 36, p. 102520. https://doi.org/10.1016/j.pdpdt.2021.102520.

71. Zhao Y., Moritz T., Hinds M.F., Gunn J.R., Shell J.R., Pogue B.W., Davis S.J. J. Biophotonics, 2021, vol. 14, no. 11, e202100088. https://doi.org/10.1002/jbio.202100088.

72. Karakullukcu B., Kanick S.C., Aans J.B., Sterenborg H.J., Tan I.B., Amelink A., Robinson D.J. Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy. Journal of Biophotonics, 2011, vol. 4, no. 10, pp. 740–751. https://doi.org/ 10.1002/ jbio.201100051.

73. Sun H., Ong Y., Yang W., Sourvanos D., Dimofte A., Busch T.M., Singhal S., Cengel K.A., Zhu T.C. Clinical PDT dose dosimetry for pleural Porfimer sodium-mediated photodynamic therapy. J. Biomed. Opt., 2024, vol. 29, no. 1, p. 018001. https://doi.org/10.1117/1.JBO.29.1.018001.

74. Schaberle F.A. Assessment of the actual light dose in photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2018, vol. 23, pp. 75–77. https://doi.org/10.1016/j.pdpdt.2018.06.009.

75. Kamel B., El-Daher M., Bachir W., Aljalali S. Effect of tissue optical properties on the fluorescence of BODIPY derivative as a photosensitizer for photodynamic therapy. Spectroscopy, 2024. https://doi.org/10.56530/spectroscopy.ye4569u1.

76. Clancy N.T., Arya S., Stoyanov D., Singh M., Hanna G.B., Elson D.S. Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope. Biomed. Opt. Express, 2015, vol. 6, pp. 4179–4190.

77. Jacques S.L. Optical properties of biological tissues: a review. Physics in Medicine and Biology, 2013, vol. 58, no. 11, pp. R37–R61. https:// doi.org/ 10.1088/0031-9155/58/11/R37.

78. Pilon L., Bhowmik A., Heng R.-L., Yudovsky D. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media: erratum. Appl. Opt., 2015, vol. 54, pp. 6116–6117.

79. Bahl A., Segaud S., Xie Y., Shapey J., Bergholt M.S., Vercauteren T. A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin-based phantoms and Monte Carlo experiments. J. Biophotonics, 2024, vol. 17, no. 6, e202300536. https://doi.org/10.1002/jbio.202300536.

80. Nishimura T., Takai Y., Shimojo Y. et al. Determination of optical properties in double integrating sphere measurement by artificial neural network based method. Opt. Rev., 2021, vol. 28, pp. 42–47. https://doi.org/10.1007/s10043-020-00632-6.

81. Simpson C.R., Kohl M., Essenpreis M., Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol., 1998, vol. 43, pp. 2465–2478. https://doi.org/10.1088/0031- 9155/43/9/003.

82. Palmer G.M., Ramanujam N. Monte Carlo based inverse model for calculating tissue optical properties. Part 1, theory and validation on synthetic phantoms. Appl. Opt., 2006, vol. 45, no. 5, pp. 1062–1071. https://doi.org/10.1364/AO.45.001062.

83. Rajaram N., Nguyen T.H., Tunnell J.W. A lookup-table based inverse model for measuring optical properties of turbid media. J. Biomed. Opt., 2008, vol. 13, no. 5, p. 050501. https://doi.org/10.1117/1.2981797.

84. Tseng S.H., Grant A., Durkin A.J. In vivo determination of skin near- infrared optical properties using diffuse optical spectroscopy. J. Biomed. Opt., 2008, vol. 13, p. 014016. https://doi.org/10.1117/1.2829772.

85. Wisotzky E.L., Arens P., Dommerich S., Hilsmann A., Eisert P., Uecker F.C. Determination of the optical properties of cholesteatoma in the spectral range of 250 to 800 nm. Biomed. Opt. Express, 2020, vol. 11, pp. 1489–1500.

86. Shapey J., Xie Y., Nabavi E., Ebner M., Saeed S.R., Kitchen N., Dorward N., Grieve J., McEvoy A.W., Miserocchi A., Grover P., Bradford R., Lim Y.-M., Ourselin S., Brandner S., Jaunmuktane Z., Vercauteren T. J. Biophotonics, 2022, vol. 15, no. 4, e202100072. https://doi.org/10.1002/jbio.202100072.

87. Sweer J.A., Chen M.T., Salimian K.J., Battafarano R.J., Durr N.J. Wide- field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging. Journal of Biophotonics, 2019, vol. 12, no. 9, e201900005. https://doi.org/ 10.1002/jbio.201900005.

88. Bashkatov A., Genina E., Kochubey V., Gavrilova A., Kapralov S., Grishaev V., Tuchin V. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: Prognosis for gastroenterology. Medical Laser Application, 2007, vol. 22, pp. 95–104.

89. Krivetskaya A.A., Savelieva T.A., Kustov D.M. et al. Method for Assessing the Optical Properties of Multilayer Tissues of the Gastrointestinal Tract ex Vivo. Phys. Atom. Nuclei, 2024, vol. 87, pp. 1727–1729. https://doi.org/ 10.1134/S1063778824100247.

90. Bashkatov A., Genina E., Kochubey V., Rubtsov V., Kolesnikova E., Tuchin V. Optical properties of human colon tissues in the 350– 2500 nm spectral range. Quantum Electronics, 2014, vol. 44, p. 77.

91. Ben LaRiviere N., Ferguson L., Garman K.S., Fisher D.A., Jokerst N.M. Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film silicon photodetector arrays. Biomed. Opt. Express, 2019, vol. 10, pp. 5703– 5715.

92. Zhu T.C., Sun H., Ong Y.H. et al. Real-time PDT Dose Dosimetry for Pleural Photodynamic Therapy. Proc. SPIE Int. Soc. Opt. Eng., 2022, vol. 11940, p. 1194002. https://doi.org/ 10.1117/12.2612188.

93. Ong Y.H., Kim M.M., Finlay J.C. et al. PDT dose dosimetry for Porfimer sodium-mediated pleural photodynamic therapy (pPDT). Phys. Med. Biol., 2017, vol. 63, no. 1, p. 015031. https://doi.org/ 10.1088/1361- 6560/aa9874.

94. Lilge L., Wu J., Xu Y., Manalac A., Molehuis D., Schwiegelshohn F., Vesselov L., Embree W., Nesbit M., Betz V., Mandel A., Jewett M., Kulkarni G. Minimal required PDT light dosimetry for nonmuscle invasive bladder cancer. Journal of Biomedical Optics, 2020, vol. 25, no. 6, p. 068001. https://doi.org/ 10.1117/1.JBO.25.6.068001.

95. Saager R.B., Cuccia D.J., Durkin A.J. Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy. Journal of Biomedical Optics, 2010, vol. 15, no. 1, p. 017012. https://doi.org/ 10.1117/1.3299322.

96. Jones L.R., Preyer N.W. Jr., Davis M.A., Grimes C., Edling K., Holdgate N., Wallace M.B., Wolfsen H.C. Light dosimetry calculations for esophageal photodynamic therapy using porfimer sodium. Proc. SPIE 6139, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XV, 2006, p. 61391D. https://doi.org/ 10.1117/12.660155.

97. Sun H., Yang W., Zhu T.C. Real-time photosensitizer dosimetry for photodynamic therapy. Proc. SPIE 13299, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXXIII, 2025, p. 1329909. https://doi.org/ 10.1117/12.3044770.

98. Mousavi M., Moriyama L.T., Grecco C., Saito Nogueira M., Svanberg K., Kurachi C., Andersson-Engels S. Photodynamic therapy dosimetry using multiexcitation multiemission wavelength: toward real-time prediction of treatment outcome. Journal of Biomedical Optics, 2020, vol. 25, no. 6, p. 063812. https://doi.org/ 10.1117/1. JBO.25.6.063812.

99. Yassine A.-A., Lilge L., Betz V. Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimulation-based study. Biomedical Optics Express, 2021, vol. 12, pp. 5401–5422. https://doi.org/10.1364/BOE.431310.


Review

For citations:


Krivetskaya A.A., Savelieva T.A., Kustov D.M., Levkin V.V., Kharnas S.S., Loschenov V.B. Automatization of planning and control of photodynamic therapy of gastrointestinal organs. Biomedical Photonics. 2025;14(2):40-54. https://doi.org/10.24931/2413-9432-2025-14-2-40-54

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)