Preview

Biomedical Photonics

Advanced search

In vitro photodynamic efficacy of polycationic photosensitizers based on polycationic phthalocyanines

https://doi.org/10.24931/2413-9432-2025-14-3-24-29

Abstract

Polycationic photosensitizers have previously demonstrated high in vitro efficacy against lung cancer cells, including cancer stem cells, and low dark cytotoxicity. Polycationic phthalocyanines have high quantum yield of singlet oxygen and photostability. In addition, it is possible to relatively simply introduce different metal-complexing agents and substituents into phthalocyanine macrocycles, which enables varying their photophysical characteristics. In this work, we studied photophysical properties of photosensitizers based on polycationic phthalocyanine derivatives with different chemical structure with strong absorption in the long wavelength region (680–690 nm). The studied photosensitizers exhibit negligible aggregation in the 1–100 μM concentration range and show very high phototoxicity in an in vitro study on A549 lung carcinoma cells (IC50 of 60–100 nM for ZnPcChol8 and 100–300 nM for 4αZnPc4+ and 4αβZnPc4+, depending on the light dose), and low dark cytotoxicity.

About the Authors

I. D. Romanishkin
Prokhorov General Physics Institute of the Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow 119991



I. G. Meerovich
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Moscow



D. A. Bunin
I.M. Sechenov First Moscow State Medical University (Sechenov University); Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Moscow



A. S. Skobeltsin
Prokhorov General Physics Institute of the Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University); Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI
Russian Federation

Moscow 119991



E. V. Akhlyustina
I.M. Sechenov First Moscow State Medical University (Sechenov University); Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI
Russian Federation

Moscow



V. V. Levkin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



S. S. Kharnas
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



E. A. Kogan
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



Zhi-Long Chen
Huadong Hospital, Fudan University
China

Shanghai



G. A. Meerovich
Prokhorov General Physics Institute of the Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University); Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI
Russian Federation

Moscow 119991



Yu. G. Gorbunova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

Moscow



I. V. Reshetov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



References

1. Agostinis P., Berg K., Cengel K. A. et al. Photodynamic therapy of cancer: an update // CA: a cancer journal for clinicians. – 2011. – Vol. 61. – № 4. – P. 250–281. doi: 10.3322/caac.20114.

2. Abrahamse H., Hamblin M. R. New photosensitizers for photodynamic therapy // Biochemical Journal. – 2016. – Vol. 473. – № 4. – P. 347–364. doi: 10.1042/BJ20150942.

3. Kvashnina D. V., Shirokova I. Yu., Belyanina N. A. et al. Study of accumulation of water-soluble asymmetric cationic porphyrins in gram-positive wound infection pathogens during photodynamic inactivation // Biomedical Photonics. – 2025. – Vol. 14. – № 2. – P. 4–11. doi: 10.24931/2413-9432-2025-14-2-4-11.

4. Suvorov N. V., Shchelkova V. V., Rysanova E. V. et al. New cationic chlorin as potential agent for antimicrobial photodynamic therapy // Biomedical Photonics. – 2024. – Vol. 13. – № 3. – P. 14–19. doi: 10.24931/2413-9432-2024-13-3-14-19.

5. Governatore M. D., Hamblin M. R., Piccinini E. E. et al. Targeted photodestruction of human colon cancer cells using charged 17.1A chlorine6 immunoconjugates // British Journal of Cancer. – 2000. – Vol. 82. – № 1. – P. 56–64. doi: 10.1054/bjoc.1999.0877.

6. Hamblin M. R., Miller J. L., Hasan T. Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells // Cancer Research. – 1996. – Vol. 56. – № 22. – P. 5205–5210.

7. Duska L., Hamblin M., Bamberg M. et al. Biodistribution of charged F(ab’)2 photoimmunoconjugates in a xenograft model of ovarian cancer // British Journal of Cancer. – 1997. – Vol. 75. – № 6. – P. 837–844. doi: 10.1038/bjc.1997.149.

8. Photosensitizers in Medicine, Environment, and Security ed. T. Nyokong, V. Ahsen, Dordrecht: Springer Netherlands, 2012. doi: 10.1007/978-90-481-3872-2.

9. Mantareva V. N., Angelov I., Wöhrle D. et al. Metallophthalocyanines for antimicrobial photodynamic therapy: an overview of our experience // Journal of Porphyrins and Phthalocyanines. – 2013. – Vol. 17. – № 06n07. – P. 399–416. doi: 10.1142/S1088424613300024.

10. Meerovich G. A., Akhlyustina E. V., Tiganova I. G. et al. Novel Polycationic Photosensitizers for Antibacterial Photodynamic Therapy Cham: Springer, New York, NY, 2019. C. 1–19. doi: 10.1007/5584_2019_431.

11. Makarov D. A., Yuzhakova O. A., Slivka L. K. et al. Cationic Zn and Al phthalocyanines: synthesis, spectroscopy and photosensitizing properties // Journal of Porphyrins and Phthalocyanines. – 2007. – Vol. 11. – № 08. – P. 586–595. doi: 10.1142/S1088424607000680.

12. Yakubovskaya R. I., Plyutinskaya A. D., Plotnikova E. A. et al. Comparative in vitro study of different classes of photosensitizers. Pyropheophorbides and chlorines // Russian Journal of Biotherapy. – 2015. – Vol. 14. – № 1. – P. 43–51. doi: 10.17650/1726-9784-2015-14-1-43-51.

13. Yakubovskaya R. I., Plotnikova Е. А., Plyutinskaya A. D. et al. Photophysical properties and in vitro and in vivo photoinduced antitumor activity of cationic salts of meso-tetrakis(N-alkyl-3-pyridyl) bacteriochlorins // Journal of Photochemistry and Photobiology B: Biology. – 2014. – Vol. 130. – P. 109–114. doi: 10.1016/j.jphotobiol.2013.10.017.

14. Bunin D. A., Martynov A. G., Safonova E. A. et al. Robust route toward cationic phthalocyanines through reductive amination // Dyes and Pigments. – 2022. – Vol. 207. – P. 110768. doi: 10.1016/j.dyepig.2022.110768.

15. Bunin D. A., Akasov R. A., Martynov A. G. et al. Pivotal Role of the Intracellular Microenvironment in the High Photodynamic Activity of Cationic Phthalocyanines // Journal of Medicinal Chemistry. – 2025. – Vol. 68. – № 1. – P. 658–673. doi: 10.1021/acs.jmedchem.4c02451.

16. Kogan E. A., Meerovich G. A., Karshieva S. Sh. et al. On the mechanisms of photodynamic action of photosensitizers based on polycationic derivatives of synthetic bacteriochlorin against human lung cancer cells A549 (in vitro study) // Photodiagnosis and Photodynamic Therapy. – 2022. – Vol. 39. – P. 102955. doi: 10.1016/j.pdpdt.2022.102955.

17. Pominova D. V., Ryabova A. V., Skobeltsin A. S. et al. Spectroscopic study of methylene blue in vivo: effects on tissue oxygenation and tumor metabolism // Biomedical Photonics. – 2023. – Vol. 12. – № 1. – P. 4–13. doi: 10.24931/2413-9432-2023-12-1-4-13.

18. Akhlyustina E. V., Lukyanets E. A., Alekseeva N. V. et al. Photosensitizers for the photodynamic inactivation of bacteria, including in biofilms / E. V. Akhlyustina, E. A. Lukyanets, N. V. Alekseeva et al., 2018. Patent RF №2670201 c.

19. Romanishkin I. D., Akhlyustina E. V., Meerovich G. A. et al. On the aggregation of polycationic photosensitizer upon binding to Gram-negative bacteria // Methods and Applications in Fluorescence. – 2024. – Vol. 12. – № 3. – P. 035001. doi: 10.1088/2050-6120/ad3892.

20. Meerovich G. A., Linkov K. G., Nekhoroshev A. V. et al. Devices for Photodynamic Studies Based on Light-Emitting Diodes // Journal of Biomedical Photonics & Engineering. – 2021. – Vol. 7. – № 4. – P. 040308. doi: 10.18287/JBPE21.07.040308.

21. Tominaga T. T., Yushmanov V. E., Borissevitch I. E. et al. Aggregation phenomena in the complexes of iron tetraphenylporphine sulfonate with bovine serum albumin // Journal of Inorganic Biochemistry. – 1997. – Vol. 65. – № 4. – P. 235–244. doi: 10.1016/S0162-0134(96)00137-7.

22. Shi D. Cancer Cell Surface Negative Charges: A Bio-Physical Manifestation of the Warburg Effect // Nano LIFE. – 2017. – Vol. 07. – № 03n04. – P. 1771001. doi: 10.1142/S1793984417710015.

23. Meerovich I. Photodynamic efficiency of avidin-biotin system including biotinylated antibodies and phthalocyanine photosensitizer derivatives. PhD thesis: 03.00.04.- A.N. Bach Institute of Biochemistry RAS, Moscow, 2001.- 155 p.

24. Meerovich G., Romanishkin I., Akhlyustina E. et al. Photodynamic Action in Thin Sensitized Layers: Estimating the Utilization of Light Energy // Journal of Biomedical Photonics & Engineering. – 2021. – Vol. 7. – № 4. – P. 040301. doi: 10.18287/JBPE21.07.040301.

25.


Review

For citations:


Romanishkin I.D., Meerovich I.G., Bunin D.A., Skobeltsin A.S., Akhlyustina E.V., Levkin V.V., Kharnas S.S., Kogan E.A., Chen Zh., Meerovich G.A., Gorbunova Yu.G., Reshetov I.V. In vitro photodynamic efficacy of polycationic photosensitizers based on polycationic phthalocyanines. Biomedical Photonics. 2025;14(3):24-29. https://doi.org/10.24931/2413-9432-2025-14-3-24-29

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)