Application of the Kubelka-Munk model for fast intraoperative analysis of intestinal optical properties using a fiber optic spectrometer
https://doi.org/10.24931/2413-9432-2025-14-3-30-38
Abstract
Intraoperative determination of optical properties of biological tissues is an important task of medical physics, in particular, for photodynamic therapy, because it allows personalizing photodynamic treatment by accurately calculating the required light dose. In this work, we propose a new approach to simultaneous measurement of diffuse reflectance and transmission spectra of the colon wall tissue during intestinal anastomosis, based on the use of two fiber-optic devices to deliver broadband radiation both from the side of the intestinal lumen and from the outer side of the intestinal wall, from which diffuse scattered light is also recorded. To restore the optical properties of these tissues it was proposed to use the Kubelka-Munk model with transformation of the optical parameters of the model into the optical parameters of the diffusion approximation theory with custom equations based on the results of numerical modeling. The proposed approach have been tested ex vivo on the biological samples of GIT tissues, allowing us to conclude on its applicability in clinical conditions.
About the Authors
T. A. SavelievaRussian Federation
Moscow
A. A. Krivetskaya
Russian Federation
Moscow
D. M. Kustov
Russian Federation
Moscow
M. I. Klobukov
Russian Federation
Moscow
I. D. Romanishkin
Russian Federation
Moscow
K. G. Linkov
Russian Federation
Moscow
V. V. Levkin
Russian Federation
Moscow
S. S. Kharnas
Russian Federation
Moscow
V. B. Loschenov
Russian Federation
Moscow
References
1. Krivetskaya A.A., Savelyeva T.A., Kustov D.M., Levkin V.V., Kharnas S.S., and Loshchenov V.B. Automation of Planning and Control of Photodynamic Therapy for the Gastrointestinal Tract. Biomedical Photonics, 2025, vol. 14(2), рр. 40-54. doi: 10.24931/2413-9432-2025-14-2-40-54
2. Kiryushchenkova N.P., Novikov I.A. Local anisotropy of skin scattering as a possible factor in the distortion of tumor fluorescence boundaries. Biomedical Photonics, 2025, vol. 14(2), рр. 12-20. doi: 10.24931/2413-9432-2025-14-2-12-20
3. Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis // SPIE Press: Bellingham, WA. – 2015.
4. Macdonald C.M., Arridge S., Powell S. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models // J. of Biomedical Optics. – 2020. – Vol. 25. – P. 085002. doi: 10.1117/1.JBO.25.8.085002
5. Wei H.-J., Xing D., Wu G.-Y., Jin Y., Gu H.-M. Optical properties of human normal small intestine tissue determined by Kubelka-Munk method in vitro // World J Gastroenterol. – 2003. – Vol. 9. – P. 2068-2072. doi: 10.3748/wjg.v9.i9.2068
6. Wei H.-J., Xing D., Lu J.J., Gu H.M., Wu G.Y., Jin Y. Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques // World J Gastroenterol. – 2005. – Vol. 11. – P. 2413-2419. doi: 10.3748/wjg.v11.i16.2413
7. Bashkatov A.N., Genina E.A., Kochubey V.I., Rubtsov V.S., Kolesnikova E.A., and Tuchin V.V. Optical Properties of Human Colon Tissues in the Spectral Range 350–2500 nm. Quantum Electronics, 2014, vol. 44, рр. 779.
8. Carneiro I., Carvalho S., Henrique R., Oliveira L., Tuchin V.V. Kinetics of Optical Properties of Colorectal Muscle During Optical Clearing // IEEE Journal of Selected Topics in Quantum Electronics. – 2019. – Vol. 25. – P. 1-8.
9. Wiesner W., Mortelé K.J., Ji H., Ros P.R. Normal colonic wall thickness at CT and its relation to colonic distension // J Comput Assist Tomogr. – 2002. – Vol. 26. – P. 102-6. doi: 10.1097/00004728-200201000-00015
10. Kustov D.M., Savelieva T.A., Mironov T.A., Kharnas S.S., Levkin V.V., Gorbunov A.S., Shiryaev A.A., Loschenov V.B. Intraoperative Control of Hemoglobin Oxygen Saturation in the Intestinal Wall during Anastomosis Surgery // Photonics. – 2021. - Vol. 8. P. 427. doi: 10.3390/photonics8100427
11. Prahl S.A., Keijzer M., Jacques S.L., Welch A.J. A Monte Carlo model of light propagation in tissue // In Proc. SPIE of Dosimetry of Laser Radiation in Medicine and Biology. – 1989. – Vol. 5, P. 102 - 111.
12. Kubelka P. New contributions to the optics of intensely light-scattering materials // J. Opt. Soc. Am. – 1948. – Vol. 38. – P. 448-457.
13. Hamdy O., El-Azab J., Al-Saeed T.A., Hassan M.F., Solouma N.H. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface // Materials. – 2017. – Vol. 10. – P. 1104 doi: 10.3390/ma10091104
14. Van Gemert, M.J.C.; Welch, A.J.; Star, W.M.; Motamedi, M.; Cheong, W. F. Tissue optics for a slab geometry in the diffusion approximation // Laser Med Sci. – 1987. Vol. 2. – P. 295–302. doi:10.1007/BF02594174
15. Molenaar R., ten Bosch,J.J., Zijp J.R. Determination of Kubelka-Munk scattering and absorption coefficients by diffuse illumination // Appl. Opt. – 1999. – Vol. 38. P. 2068-2077. doi: 10.1364/ao.38.002068
Review
For citations:
Savelieva T.A., Krivetskaya A.A., Kustov D.M., Klobukov M.I., Romanishkin I.D., Linkov K.G., Levkin V.V., Kharnas S.S., Loschenov V.B. Application of the Kubelka-Munk model for fast intraoperative analysis of intestinal optical properties using a fiber optic spectrometer. Biomedical Photonics. 2025;14(3):30-38. https://doi.org/10.24931/2413-9432-2025-14-3-30-38