Preview

Biomedical Photonics

Advanced search

PHOTONIC METHODS FOR QUALITY EVALUATION OF SKIN ENGRAFTMENT

https://doi.org/10.24931/2413-9432-2016-5-3-30-40

Abstract

 

In this review, based on more than 70 articles of Russian and foreign authors, methods of skin engraftment monitoring are discussed. Main processes occurring in skin on cellular and subcellular levels at different stages of engraftment are considered. Optical methods which allow performing non-invasive analysis of blood vessels, collagen concentration and form of cellular respiration (by NADH fluorescence) are described. Comparative analysis of nuclear and optical methods for engraftment monitoring highly developed and widespread nowadays is presented. The advantages of optical methods includes multifunctionality, usability and clarity of results, safety and low cost. In contrast to X-ray CT, MRI and ultrasound, optical methods can be used in monitoring mode. One of the promising directions for improving quality of engraftment due to antibacterial effect, photodynamic therapy, is described in details. The use of crystalline organic nanophotosensitizers (particularly aluminum phthalocyanine) is shown to be the most promising. The main distinctive feature of its application is that nanoparticles injected into wound surface or contact area of tissue graft are not photoactive until the moment the inflammation starts. The development of method for assessing skin condition by spectroscopic properties of tissue components (using fluorescent dyes and photosensitizers in molecular and nanoforms), which allows analyzing physiological state of skin (degree and rate of engraftment or rejection) and controlling certain biochemical and physiological parameters of a tissue graft or an entire area of affected skin is shown to be crucial.


About the Authors

V. I. Makarov
General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Russian Federation


E. V. Akhlyustina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Russian Federation


D. S. Farrakhova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Russian Federation


D. V. Pominova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Russian Federation


A. V. Ryabova
General Physics Institute of the Russian Academy of Sciences, Moscow, Russia National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Russian Federation


V. B. Loschenov
General Physics Institute of the Russian Academy of Sciences, Moscow, Russia National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Russian Federation


References

1. Butler K.S., Lovato D.M., Adolphi N.L., Belfon R., Fegan D.L., Monson T.C., Hathaway H.J., Huber D.L., Tessier T.E., Bryant H.C., Flynn E.R., Larson R.S. Development of Antibody-Tagged Nanoparticles for Detection of Transplant Rejection Using Biomagnetic Sensors, Cell Transplantation, 2013, Vol. 22, No. 10, pp. 1943-54.

2. Li C., Yang C.W. The pathogenesis and treatment of chronic allograft nephropathy, Nat. Rev. Nephrol., 2009, Vol. 5, No. 9, pp. 513-19.

3. Durrbach A., Francois H., Beaudreuil S., Jacquet A., Charpentier B. Advances in immunosuppression for renal transplantation, Nat. Rev. Nephrol., 2010, Vol. 6, No. 3, pp. 160-7.

4. Galante N.Z., Tedesco H.S., Machado P.G., Pacheco-Silva A., Medina-Pestana J.O. Acute rejection is a risk factor for long-term survival in a single-center analysis of 1544 renal transplants, Transplant. Proc., 2002, Vol. 34, No. 2, pp. 508-13.

5. Zdichavsky M., Jones J.W., Ustuner E.T., Ren X., Edelstein J., Maldonado C., Breidenbach W., Gruber S.A., Ray M., Barker J. H. Scoring of skin rejection in a swine composite tissue allograft model, J Surg Res., 1999, Vol. 85, No. 1, pp. 1-8.

6. Patil D. T., Yerian L. M. Pancreas transplant: Recent advances and spectrum of features in pancreas allograft pathology, Adv. Anat. Pathol., 2010, Vol. 17, No. 3, pp. 202-8.

7. Dillman J.R., Elsayes K.M., Bude R.O., Platt J.F., Francis I.R. Imaging of pancreas transplants: Postoperative findings with clinical correlation, J. Comput. Assist. Tomogr., 2009, Vol. 33, No. 4, pp. 609-17.

8. Gwinner W. Renal transplant rejection markers, World J. Urol., 2007, Vol. 25, No. 5, pp. 445-55.

9. Schwarz A., Gwinner W., Hiss M., Radermacher J., Mengel M., Haller H. Safety and adequacy of renal transplant protocol biopsies, Am. J. Transplant., 2005, Vol. 5, No. 8, pp. 1992-6.

10. Yamaguchi Y., Yoshikawa K. Cutaneous Wound Healing: An Update, Journal of dermatology, 2001, Vol. 28, No. 10, pp. 521-34.

11. Bystrov F.G., Makarov V.G., Pominova D.V., Ryabova A.V., Loshchenov V.B. Analysis of photoluminescence decay kinetics of aluminum phthalocyanine nanoparticles interacting with immune cells, Biomedical photonics, 2016, Vol. 5, No. 1, pp. 3-8. (in Russian).

12. Salate A.C.B., Barbosa G., Gaspar P., Koeke P.U., Parizotto N.A., Benze B.G., Foschiani D. Effect of In-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of Achilles tendon in rats, Photomedicine and laser surgery, 2005, Vol. 23, No. 5, pp. 470-5.

13. Garavello I., Baranauskas V., da Cruz-Hofling M.A. Effects of low laser irradiation on angiogenesis ininjured rat tibiae, Histol histopathol, 2004, Vol. 19, No. 1, pp. 43-8.

14. Loschenov V.B., Stratonnikov A.A., Vasilchenko S.Yu., Volkova A.I., Kharnas S.S., Sheptak E.A. Development of the myocardial photodynamic revascularization method, SPIE Proceedings, 2004, No. 5486, pp. 347-51.

15. Lucas T., Waisman A., Ranjan R., Roes J., Krieg T., Muller W., Roers A, Eming S.A. Differential Roles of Macrophages in Diverse Phases of Skin Repair, The Journal of Immunology, 2010, Vol. 184, No. 7, pp. 3964-77.

16. Desmouliere A., Redard M., Darby I., Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar, Am J Pathol, 1995, Vol. 146, No. 1, pp. 56-66.

17. Carniol P., Sadick N.S. Clinical Procedures in Laser Skin Rejuvenation. Informa healthcare Publ., 2007, pp. 59-62.

18. Campos de Menezes P.F.,Requena M.B., Rosa R.G.T., Pratavieira S., Fujita A.K. L., Kurachi C., Escobar A., Wendler da Rocha R., Barboza de Nardi A., Bagnato V.S. Modification of collagen fiber after PDT in porcine skin models by two photons microscopy analysis, Photodiagnosis and Photodynamic Therapy, 2015, Vol. 12, No. 3, p. 335.

19. Li T., Huang Z.F., Wang H.W., Lin J.Q., Chen G.N, Chen X.W., Chen R., Huang Z., Wang X.L. Evaluation of collagen alteration after topical photodynamic therapy (PDT) using second harmonic generation (SHG) microscopy – in vivo study in a mouse model, Photodiagnosis and Photodynamic Therapy, 2012, Vol. 9, No. 2, pp. 164-9.

20. Modica-Napolitano J.S., Singh K.K. Mitochondrial dysfunction in cancer, Mitochondrion, 2004, Vol. 4, No. 5-6, pp. 755-62.

21. Scheffler I.E. Mitochondria. New York, Wiley-Liss Publ., 1999.

22. Stryer L. Biochemistry. New York, W. H. Freeman and Company Publ., 1999.

23. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences, Antioxid Redox Signal, 2008, Vol. 10, No. 2, pp. 179-206.

24. Skala M.C., Riching K.M., Gendron-Fitzpatrick A., Eickhoff J., Eliceiri K.W., White J.G., Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proc Natl Acad Sci USA, 2007, Vol. 104, No. 49, pp. 19494-9.

25. Warburg O. On the origin of cancer cells, Science, 1956, Vol. 123, No. 3191, pp. 309-14.

26. Carew J.S., Huang P. Mitochondrial defects in cancer, Mol Cancer, 2002, Vol. 1, No. 9, pp. 9.

27. Modica-Naplitano J.S., Singh K.K. Mitochondria as targets for detection and treatment of cancer, Expert Reviews in Molecular Medicine, 2002, Vol. 4, No. 9, pp. 1-18.

28. Cassarion D.S., Bennett J.P. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutation and oxidative pathology, protective nuclear response, and cell death in neurodegeneration, Brain Research Reviews, 1999, Vol. 29, No. 1, pp. 1-25.

29. Vishwasrao H.D., Heikal A.A., Kasischke K.A., Webb W.W. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy, J Biol Chem, 2005, Vol. 280, No. 26, pp. 25119-26.

30. Bird D.K., Yan L., Vrotsos K.M., Eliceiri K.W., Vaughan E.M., Keely P.J., White J.G., Ramanujam N. Metabolic mapping of MCF 10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH, Cancer Res., 2005, Vol. 65, No. 19, pp. 8766-73.

31. Uppal A., Gupta P.K. Measurements of NADH concentration in normal and malignant human tissues from breast and oral cavity, Biotechnol Appl Biochem, 2003, Vol. 37, Pt. 1, pp. 45-50.

32. Chance B., Baltscheffsky H.J. Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide, Biol Chem, 1958, Vol. 233, No. 3, pp. 736-9.

33. Change B., Oshino N., Sugano T., Mayevsky A.A. Basic principles of tissue oxygen determination from mitochondrial signals, Adv Exp Med Biol, 1973, No. 37A, pp. 277-92.

34. Chance B., Lieberman M. Intrinsic fluorescence emission from the cornea at low temperatures: evidence of mitochondrial signals and their differing redox states in epithelial and endothelial sides, Exp Eye Res, 1978, Vol. 26, No. 1, pp. 111-7.

35. Mayevsky A., Rogatsky G.G. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies, J Physiol Cell Physiol, 2007, Vol. 292, No. 2, pp. 615-40.

36. Visser A.J.W.G., Hoek A.V. The fluorescence decay of reduced nicotinamide in aqueous solution after excitation with a UV-mode locked laser, J. Photochem. Photobiol., 1980, Vol. 33, No. 1, рр. 35-41.

37. Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. Garland Science Publ., 2015. 1465 p.

38. Chance B. Pyridine nucleotideas an indicator of the oxygen requirements for energy-linkedfunctions of Mitochondria, Circ Res, 1976, Vol. 38, No. 5, Suppl. 1,pp. 131-8.

39. Chance B., Jamieson D., Coles H. Energy-linked pyridine nucleotide reduction: inhibitory effects of hyperbaric oxygen in vitro and in vivo, Nature, 1965, Vol. 206, No. 981, pp. 257-63.

40. Chance B., Legallais V., Schoener B. Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland, Nature, 1962, No. 195, pp. 1073-5.

41. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers Publ., 1999. 698 p.

42. Deka G., Wu W.W., Kao F.J. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging, Journal of biomedical optics, 2013, Vol. 18, No. 6, pp. 1-8.

43. Tuchin V.V. Opticheskaya biomeditsinskaya diagnostika (Optical biomedical diagnostics). Moscow, FIZMALIT Publ., 2007. pp. 81-82.

44. Baraghis E., Devor A., Fang Q., Srinivasan V.J., Wu W., Lesage F., Ayata C., Kasischke K. A., Boas D.A., Sakadzic S. Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response, J Biomed Opt, 2011, Vol. 16, No. 10, 106003.

45. Rice W.L., Kaplan D.L., Georgakoudi I. Two-Photon Microscopy for Non-Invasive, Quantitative Monitoring of Stem Cell Differentiation, PLoS One, 2010, Vol. 5, No. 4, e10075.

46. Longo C., Galimberti M., De Pace B., Pellacani G., Bencini P. L. Laser skin rejuvenation: epidermal changes and collagen remodeling evaluated by in vivo confocal microscopy, Lasers Med Sci, 2013, Vol. 28, pp. 769-76.

47. Boulaftali Y., Lamrani L., Rouzaud M. C., Loyau S., Jandrot-Perrus M., Bouton M. C., Ho-Tin-Noé B. The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy, Thromb. Haemost., 2012, Vol. 107, No. 5, pp. 962-71.

48. Laschke M.W., Vollmar B., Menger M.D. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue, Eur. Cell. Mater., 2011, Vol. 22, pp. 147-64.

49. Wang H., Shi L., Qin J., Yousefi S., Li Y., Wang R.K. Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing, Lasers Surg. Med., 2014, Vol. 46, No. 6, pp. 470-8.

50. An L., Qin J., Wang R.K. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds, Opt. Express., 2010, Vol. 18, No. 8, pp. 8220-8.

51. Struijker-Boudier H.A., Rosei A.E., Bruneval P., Camici P.G., Christ F., Henrion D., Lévy B.I., Pries A., Vanoverschelde J.L. Evaluation of the microcirculation in hypertension and cardiovascular disease, Eur. Heart J., 2007, Vol. 28, pp. 2834-40.

52. Quondamatteo F. Skin and diabetes mellitus: what do we know? Cell Tissue Res, 2014, Vol. 355, No. 1, pp. 1-21.

53. Rossi M., Carpi A., Galetta F., Franzoni F., Santoro G. The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases? Biomed. Pharmacother., 2006, Vol. 60, No. 8, pp. 437-42.

54. Rui S., Cnen M., Tuchin V.V., Zhu D. Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing, Biomedical Optics Express, 2015, Vol. 6, No. 6, pp. 1977-89.

55. Galanzha E.I., Zharov V. P. Photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters in vivo, Cytometry A, 2011, Vol. 79, No. 10, pp. 746-57.

56. Khaksari K., Kirkpatrick S.J. Combined effects of scattering and adsorbsion on laser speckle contrast imaging, Journal of Biomedical optics, 2016, Vol. 21, No. 7.

57. Tatsuo T., Toshiyo T., Ake Oberg P. Biomedical TRANSDUCERS and INSTRUMENTS. CRC Press LLC Publ., 1997. p. 137.

58. Benitez E., Sumpio B.J., Chin J., Sumpio B.E. Contemporary assessment of foot perfusion in patients with critical limb ischemia, Seminars in vascular surgery, 2014, Vol. 27, No. 1, pp. 3-15.

59. Galanzha E.I., Zharov V.P. Circulation Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo, Cancers (Basel), 2013, Vol. 5, No. 4, pp. 1691-1738.

60. Erdi Y.E. Limits of Tumor Detectability in Nuclear Medicine and PET, Mol Imaging Radionucl Ther, 2012, Vol. 21, No. 1, pp. 23-28.

61. Huang D., Swanson E., Lin C., Schuman J., Stinson W., Chang W., Hee M., Flotte T., Gregory K., Puliafito C., Fujimoto J.G. Optical coherence tomography, Science, 1991, Vol. 254, No. 5035, pp.1178-81.

62. Tan W., Vinegoni C., Norman J.J., Desai T.A., Boppart S.A. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs, Microsc Res Tech, 2007, Vol. 70, No. 4, pp. 361-71.

63. Liang X., Graf B.W., Boppart S.A. Imaging engineered tissues using structural and functional optical coherence tomography, J Biopho-tonics, 2009, Vol. 2, No. 11, рр. 643-55.

64. Tan W., Oldenburg A.L., Norman J.J., Desai T.A., Boppart S.A. Optical coherence tomography of cell dynamics in three-dimensional tissue models, Opt Express, 2006, Vol. 14, No. 16, pp. 7159-71.

65. Denk W., Strickler J., Webb W. Two-photon laser scanning fluorescence microscopy, Science, 1990, Vol. 248, No. 4951, pp. 73-6.

66. Ulrich M., Lange-Asschenfeldt S. In vivo confocal microscopy in dermatology: from research to clinical application, Journal of Biomedical Optics, 2013, Vol. 18, No. 6, 061212.

67. Campagnola P.J., Loew L.M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nat Biotechnol, 2003,Vol. 21, No. 11, pp. 1356-60.

68. Cheng J.X., Jia Y.K., Zheng G.F., Xie X.S. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology, Biophys J, 2002, Vol. 83, No. 1, pp. 502-9.

69. Benati E., Bellini V., Borsari S., Dunsby C., Ferrari C., French P., Guanti M., Guardoli D., Koenig K., Pellacani G., Ponti G., Schianchi S., Talbot

70. C., Seidenari S. Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy, Skin Res Technol, 2011, Vol. 17, No. 3, pp. 295-303.

71. van Munster E.B., Gadella T.W.J. Fluorescence lifetime imaging microscopy (FLIM), Microscopy Techniques, 2005, Vol. 95, pp. 143-75.

72. Breunig H.G., Studier H., Konig K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo, Opt Express, 2010, Vol. 18, No. 8, pp. 7857-71.

73. Ivanov A.P., Lojko V.A., Dik V.P. Light Transportation in Densely Packed Dispersive Media, Nauka i Technika, 1988.

74. Chance B., Liu H., Kitai T., Zhang Y. Effects of soluteson optical properties of biological materials: models, cells and tissues, Anal Bio-chem, 1995, Vol. 227, No. 2, pp. 351-62.

75. Perera G., Hay R. A guide to antibiotic resistance in bacterial skin infections, J Eur Acad Dermatol Venereol, 2005, Vol. 19, No. 5, pp. 531-45.

76. Dever L.A., Dermody T.S. Mechanisms of bacterial resistance to antibiotics, Arch Intern Med, 1991, Vol. 151, No. 5, pp. 886-95.

77. Vasilchenko S.Yu., Volkova A.I., Ryabova A.V., Loschenov V.B., Konov V.I., Mamedov A.A., Kuzmin S.G., Lukyanets E.A. Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology, Journal of Biophotonics, 2010, Vol. 3, No. 5-6, pp. 336-46.


Review

For citations:


Makarov V.I., Akhlyustina E.V., Farrakhova D.S., Pominova D.V., Ryabova A.V., Loschenov V.B. PHOTONIC METHODS FOR QUALITY EVALUATION OF SKIN ENGRAFTMENT. Biomedical Photonics. 2016;5(3):30-40. (In Russ.) https://doi.org/10.24931/2413-9432-2016-5-3-30-40

Views: 1342


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)