Solubilization of hydrophobic bacteriochlorin-based photosensitizers in micelles of surfactants
https://doi.org/10.24931/2413-9432-2019-8-1-18-23
Abstract
The aim of the paper was to obtain a stable micellar emulsion of potent photosensitizer (PS) – O-propyloxime-N-propoxybacteriopurpurinimide methyl ester absorbing light in long-wave region of the spectrum (λmax = 800±2 нм). Solubilizates of the dye based on different surfactants (Kolliphor ELP, Poloxamer 407, Emuxol 268) were obtained. Taking into account the physical and chemical parameters, the most potent micellar emulsion for injection was selected and characterized. The emulsion based on Kolliphor ELP remains stable for 4 months, with no changes in the fluorescence spectrum and absorption, as well as the particle diameter.
About the Authors
E. A. PlotnikovaRussian Federation
V. O. Stramova
Russian Federation
N. B. Morozova
Russian Federation
A. D. Plyutinskaya
Russian Federation
P. V. Ostroverkhov
Russian Federation
M. A. Grin
Russian Federation
A. F. Mironov
Russian Federation
R. I. Yakubovskaya
Russian Federation
A. D. Kaprin
Russian Federation
References
1. Titova V.A. The role and place of photodynamic therapy in multimodal treatment programs for malignant tumors, Biomedical Photonics, 2012, vol. 1, no. 1, pp. 3–5. (in Russian)
2. Dabrowski J.M., Arnaut L.G. Photodynamic Therapy (PDT) of Cancer: From a Local to a Systemic Treatment, Photochem. Photobiol. Sci., 2015, vol. 14(10), pp. 1765–1780.
3. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B.C., Golab J. Photody-namic Therapy of Cancer: An Update, CA Cancer J Clin, 2011, vol. 61(4), pp. 250–281.
4. Kimura M., Miyajima K., Kojika M., Kono T., Kato H. Photodynamic Therapy(PDT) with Chemotherapy for Advanced Lung Cancer with Airway Stenosis, Int J Mol Sci, 2015, vol. 16(10), pp. 25466–25475.
5. Obaid G., Huang H.-C., Hasan T. Targeted Photodynamic Therapy– An Assimilation of Successes, Challenges and Future Directions. In: Photodynamic Medicine: From Bench to Clinic. London: RSC, 2016. pp. 137–160.
6. Chilakamarthi U., Giribabu L. Photodynamic Therapy: Past, Present and Future, Chem Rec, 2017, vol. 17(8), pp. 775–802.
7. Filonenko E.V., Serova L.G. Photodynamic therapy in clinical practice, Biomedical Photonics, 2016, vol. 5, no. 2, pp. 26–37. (in Russian)
8. Ethirajan M., Chen Y., Joshi P., Pandey R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy, Chem Soc Rev, 2011, vol. 40(1), pp. 340–362.
9. Machinskaya E.A., Ivanova-Radkevich V.I. Review of the mechanisms of selective accumulation of photosensitizers of various chemical structures in tumor tissue, Biomedical photonics, 2013, vol. 2, no. 4, pp. 28–33. (in Russian)
10. Lukyanets E.A. Search for new photosensitizers for photodynamic therapy, Biomedical photonics, 2013, vol. 2, no. 3, pp. 3–16. (in Russian)
11. Staron J., Boron B., Karcz D., Szczygieł M., Fiedor L. Progress in Chemical Modifications of Chlorophylls and Bacteriochlorophylls or the Applications in Photodynamic Therapy, Curr. Med. Chem., 2015, vol. 22(26), pp. 3054–3074.
12. Suvorov N.V., Grin M.A., Popkov A.M., Gagarina A.S., Mironov A.F., Majouga A.G. Novel Photosensitizer Based on Bacteriopurpurinimide and Magnetite Nanoparticles, Makrogeterotsikly, 2016, vol. 9(2), pp. 175–179.
13. Huang Y., Luo D., Hamblin M.R. Stable synthetic bacteriochlorins: potent light activated anti-cancer drugs, Curr. Org. chem., 2015, vol. 19(10), pp. 948–957.
14. Kawakami K., Oda N., Miyoshi K., Funaki T., Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents, Eur J Pharm Sci, 2006, vol. 28(1–2), pp. 7–14.
15. Sosnov A.V., Ivanov R.V., Balakin K.V., Shobolov D.L., Fedotov Yu.A., Kalmykov Yu.M. Development of drug delivery systems using micro- and nanoparticles, Kachestvennaya klinicheskaya praktika, 2008, no. 2, pp. 4–12. (in Russian)
16. Gulyakin I.D., Oborotova N.A., Pechennikov V.M. Solubilization of hydrophobic anticancer drugs, Khimiko-farmatsevticheckii zhurnal, 2014, vol. 48, no. 3, pp. 46–50. (in Russian)
17. Zhang Z., Cui C., Wei F., Lv H. Improved solubility and oral bioavailability of Apigeninvia Soluplus®/Pluronic F127 binary mixed micelles system, Drug Dev Ind Pharm, 2017, vol. 43(8), pp. 1276–1282.
18. Pantyushenko I.V., Grin M.A., Yakubovskaya R.I., Plotnikova E.A., Morozova N.B, Tsygankov A.A., Mironov A.F. New highly effective bacteriochlorophyll a series IR-photosensitizer for photodynamic cancer therapy, Vestnik MITKhT, 2014, vol. 9, no. 3, pp. 3–10. (in Russian)
19. Lastovoi A.P., Avramenko G.V. Study of the association of tetramethyltribenzotetraazachlorin in binary mixtures of polar solvents and in colloidal solutions of nonionic surfactants, Makrogeterotsikly, 2013, Vol. 6(1), pp. 98–105. (in Russian)
20. Varela-Moreira A., Shi A., Fens M., Lammers T., Hennink W.E., Schiffelers R.M. Clinical application of polymeric micelles for the treatment of cancer, Mater. Chem. Front., 2017, vol. 1(8), pp. 1485–1501.
21. Kabanov A.V., Batrakova E.V., Alakhov V.Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery, J Control Release, 2002, vol. 82(2–3), pp. 189–212.
Review
For citations:
Plotnikova E.A., Stramova V.O., Morozova N.B., Plyutinskaya A.D., Ostroverkhov P.V., Grin M.A., Mironov A.F., Yakubovskaya R.I., Kaprin A.D. Solubilization of hydrophobic bacteriochlorin-based photosensitizers in micelles of surfactants. Biomedical Photonics. 2019;8(1):18-23. https://doi.org/10.24931/2413-9432-2019-8-1-18-23