Preview

Biomedical Photonics

Advanced search

Spontaneous Raman spectroscopy for intracranial tumors diagnostics ex vivo

https://doi.org/10.24931/2413-9432-2020-9-3-4-12

Abstract

Neurosurgery of intracranial tumors, especially of glial origin, is a non-trivial task due to their infiltrative growth. In recent years, optical methods of intraoperative navigation have been actively used in neurosurgery. However, one of the most widely used approaches based on the selective accumulation of fluorescent contrast medium (5-ALA-induced protoporphyrin IX) by the tumor cannot be applied to a significant number of tumors due to its low accumulation. On the contrary, Raman spectroscopy, which allows analyzing the molecular composition of tissues while preserving all the advantages of the method of fluorescence spectroscopy, does not require the use of an exogenous dye and may become a method of choice when composing a system for intraoperative navigation or optical biopsy. This work presents the first results of using the principal component method to classify Raman spectra of human glioblastoma with intermediate processing of spectra to minimize possible errors from the fluorescence of both endogenous fluorophores and photosensitizers used in fluorescence navigation. As a result, differences were found in the principal component space, corresponding to tissue samples with microcystic components, extensive areas of necrosis, and foci of fresh hemorrhages. It is shown that this approach can serve as the basis for constructing a system for automatic intraoperative tissue classification based on the analysis of Raman spectra.

About the Authors

I. D. Romanishkin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation
Moscow


L. R. Bikmukhametova
ООО “BIOSPEC”
Russian Federation
Moscow


T. A. Savelieva
Prokhorov General Physics Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation
Moscow


S. A. Goryaynov
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation
Moscow


A. V. Kosyrkova
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation
Moscow


V. A. Okhlopkov
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation
Moscow


D. A. Golbin
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation
Moscow


I. Yu. Poletaeva
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation
Moscow


A. A. Potapov
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation
Moscow


V. B. Loschenov
Prokhorov General Physics Institute of the Russian Academy of Sciences; ООО “BIOSPEC”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation
Moscow


References

1. Stummer W., Pichlmeier U., Meinel T., Wiestler O. D., Zanella F., Reulen H. J. Fluorescence-guided surgery with 5‑aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, Lancet Oncol, 2006, vol. 7 (5), pp. 392– 401.

2. Potapov A. A., Goriaĭnov S. A., Loshchenov V. B., Savel’eva T. A., Gavrilov A. G., Okhlopkov V. A. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas, Zh. Vopr. Neirokhir. Im. N. N. Burdenko, 2013, vol. 77 (2), pp. 3–10.

3. Valdes P. A., Jacobs V. L., Wilson B. C., Leblond F., Roberts D. W., Paulsen K. D. System and methods for wide-field quantitative fluorescence imaging during neurosurgery, Opt. Lett., 2013, vol. 38 (15), pp. 2786.

4. Savelieva T. A., Loshchenov M. V., Borodkin A. V., Linkov K. G., Kosyrkova A. V., Goryajnov S. A., et al. Combined spectroscopic and video fluorescent instrument for intraoperative navigation when removing a glial tumor, SPIE Photonics Europe, 2020, vol. 11363. doi: 10.1117/12.2556064

5. Marcu L., Jo J. A., Butte P. V., Yong W. H., Pikul B. K., Black K. L., Thompson R. C. Fluorescence Lifetime Spectroscopy of Glioblastoma Multiforme, Photochem. Photobiol., 2004., vol. 80 (1), pp. 98.

6. Butte P. V., Mamelak A. N., Nuno M., Bannykh S. I., Black K. L., Marcu L. Fluorescence lifetime spectroscopy for guided therapy of brain tumors, Neuroimage, 2011, vol. 54, suppl. 1, s125–s135.

7. Kantelhardt S. R., Kalasauskas D., König K., Kim E., Weinigel M., Uchugonova A., Giese A. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue, J. Neurooncol., 2016., vol. 127 (3), pp. 473–482.

8. Kut C., Chaichana K. L., Xi J., Raza S. M., Ye X., McVeigh E. R., Rodriguez F. J. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography, Sci. Transl. Med., 2015, vol. 7 (292), 292ra100–292ra100.

9. Fabelo H., Ortega S., Lazcano R., Madroñal D., Callicó G. M., Juárez E. An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation, Sensors, 2018, vol. 18 (2), pp. 430.

10. Jermyn M., Mok K., Mercier J., Desroches J., Pichette J., Saint- Arnaud K., Intraoperative brain cancer detection with Raman spectroscopy in humans, Sci. Transl. Med., 2015, vol. 7 (274), 274ra19–274ra19.

11. Brusatori M., Auner G., Noh T., Scarpace L., Broadbent B., Kalkanis S. N. Intraoperative Raman Spectroscopy, Neurosurg. Clin. N. Am., 2017, vol. 28 (4), pp. 633–652.

12. Tashibu K. Analysis of water content in rat brain using Raman spectroscopy, No To Shinkei, 1990, vol. 42 (10), pp. 999–1004.

13. Kitajima T., Tashibu K., Tani S., Mizuno A., Nakamura N. Analysis of water content in young rats brain edema by Raman spectroscopy, No To Shinkei, 1993, vol. 45 (6), pp. 519–524. [in Japan.]

14. Mizuno A., Hayashi T., Tashibu K., Maraishi S., Kawauchi K., Ozaki Y. Near-infrared FT-Raman spectra of the rat brain tissues, Neurosci. Lett., 1992, vol. 141 (1), pp. 47–52.

15. Mizuno A., Kitajima H., Kawauchi K., Muraishi S., Ozaki Y. Nearinfrared Fourier transform Raman spectroscopic study of human brain tissues and tumours, J. Raman Spectrosc., 1994, vol. 25 (1), pp. 25–29.

16. Beleites C., Geiger K., Kirsch M., Sobottka S. B., Schackert G., Salzer R. Raman spectroscopic grading of astrocytoma tissues: Using soft reference information, Anal. Bioanal. Chem., 2011, vol. 400 (9), pp. 2801–2816.

17. Koljenović S., Schut T. C., Wolthuis R., Vincent A. J., Hendriks- Hagevi G., Santos L., et al. Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe, Anal. Chem., 2007, vol. 79 (2), pp. 557–564.

18. Krafft C., Kirsch M., Beleites C., Schackert G., Salzer R. Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains, Anal. Bioanal. Chem., 2007, vol. 389 (4), pp. 1133– 1142.

19. Koljenović S., Choo-Smith L.-P., Schut T. C. B., Kros J. M., van den Berge H. J., Puppels G. J. Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy, Lab. Investig., 2002, vol. 82 (10), pp. 1265–1277.

20. Krafft C., Neudert L., Simat T., Salzer R. Near infrared Raman spectra of human brain lipids, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., 2005, vol. 61 (7), pp. 1529–1535.

21. Krafft C., Sobottka S. B., Schackert G., Salzer R. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors, Analyst, 2005, vol. 130 (7), pp. 1070–1077.

22. Köhler M., Machill S., Salzer R., Krafft C. Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry, Anal. Bioanal. Chem., 2009, vol. 393 (5), pp. 1513–1520.

23. Leslie D. G., Kast R. E., Poulik J. M., Rabah R., Sood S., Auner G. W., et al. Identification of pediatric brain neoplasms using raman spectroscopy, Pediatr. Neurosurg., 2012. vol. 48 (2), pp. 109–117.

24. Desroches J., Jermyn M., Mok K., Lemieux-Leduc C., Mercier J., St- Arnaud K. et al. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification, Biomed. Opt. Express, 2015, vol. 6 (7), pp. 2380.

25. Jermyn M., Desroches J., Mercier J., St-Arnaud K., Guiot M.-C., Leblond F., et al. Raman spectroscopy detects distant invasive brain cancer cells centimeters beyond MRI capability in humans, Biomed. Opt. Express, 2016, vol. 7 (12), pp. 5129.

26. Zhang Z.-M., Chen S., Liang Y.-Z., Liu Z.-X., Zhang Q.-M., Ding L.-X., et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy, J. Raman Spectrosc., 2009, vol. 41 (6), pp. 659–669.

27. Bikmukhametova L. R., Romanishkin I. A., Savelieva T. A., Skobeltsin A. S., Maklygina Yu. S., Loschenov V. B., et al. Spontaneous Raman Spectroscopy for Intracranial Tumor Diagnostics, J. Phys. Conf. Ser., 2020, vol. 1439 (1), 012038.

28. Osmakov I. A., Savelieva T. A., Loschenov V. B., Goryajnov S. A., Potapov A. A. Cluster analysis of the results of intraoperative optical spectroscopic diagnostics in brain glioma neurosurgery, Biomed. Photonics, 2018, vol. 7 (4), pp. 23–34.


Review

For citations:


Romanishkin I.D., Bikmukhametova L.R., Savelieva T.A., Goryaynov S.A., Kosyrkova A.V., Okhlopkov V.A., Golbin D.A., Poletaeva I.Yu., Potapov A.A., Loschenov V.B. Spontaneous Raman spectroscopy for intracranial tumors diagnostics ex vivo. Biomedical Photonics. 2020;9(3):4-12. https://doi.org/10.24931/2413-9432-2020-9-3-4-12

Views: 1028


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)