Preview

Biomedical Photonics

Advanced search

Photobiomodulation of acute pain syndrome after septoplasty

https://doi.org/10.24931/2413-9432-2021-10-2-34-41

Abstract

The paper evaluates the effectiveness of the use of therapeutic laser exposure (photobiomodulation therapy – PBMT) to minimize acute pain in the early postoperative period in patients after septoplasty. The study included two groups of patients. Patients of the first group (31 patients) underwent septoplasty with standard management in the postoperative period. Patients of the second group (31 patients) also underwent septoplasty, and then added PBMT to the standard measures of the postoperative period at 3, 6 and 24 h after septoplasty (λ = 0.890 μm, P = 10 W, 2 min) and then intranasally 48 h after septoplasty (λ = 0.630 μm, P = 8 W, 2 min). In patients of both groups, heart rate variability and pain were assessed using a visual analog scale within 48 hours after septoplasty. In patients of the second group, after the use of PBMT, the indicators of heart rate variability had a significantly lower total power, compared with patients of the first group. So, after PBMT, the ultra-low-frequency component of the spectral analysis of heart rate variability in the first group was 18580 ± 2067 ms2, which is significantly higher than in the second group (8086 ± 3003 ms2) (p <0.001). The low-frequency component of heart rate variability was also significantly higher in the first group (1871 ± 405 ms2) compared to the second (1095 ± 190 ms2) (p <0.005), which indicates an increase in the tension of the sympathetic part of the autonomic nervous system in the group without the use of PBMT. In the first 3 hours after surgery, the severity of pain between the groups did not differ significantly (p = 0.07). In the period from 6 to 24 hours after surgery, patients who did not undergo PBMT experienced significantly higher pain than patients with PBMT (p <0.001). Thus, in our study, the group of patients with PBMT showed better results in pain and heart rate variability compared to the classical rehabilitation of patients after septoplasty.

About the Authors

I. V. Kastyro
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



Yu. S. Romanko
First Sechenov Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

Moscow



G. M. Muradov
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



V. I. Popadyuk
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



I. K. Kalmykov
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



M. G. Kostyaeva
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



Yu. Sh. Gushchina
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



S. G. Dragunova
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

Moscow



References

1. Pustovit O.M., Nasedkin A.N., Egorov V.I., Isaev V.M., Isaev E.V., Morozov I.I. Using ultrasonic cavitation and photochromotherapy to increase nasal mucosa reparation process after septoplasty and submucous vasotomy of the inferior nasal turbinates. Golova I Sheya Head and neck Russian Journal, 2018, Vol. 6(2), рр. 20–26.

2. Sommer F, Hoffmann T.K. Septoplasty—a surgical or political challenge? The Lancet, 2019, Vol. 394, рр. 276–277.

3. Kastyro I.V., Torshin V.I., Drozdova G.A., Popadyuk V.I. Acute pain intensity in men and women after septoplasty. Russian Open Medical Journal, 2017, Vol. 6(3), рр. 1–6.

4. Kastyro I.V., Inozemtsev A.N., Shmaevsky P.E., Khamidullin G.V., Torshin V.I., Kovalenko А.N., Pryanikov P.D., Guseinov I.I. The impact of trauma of the mucous membrane of the nasal septum in rats on behavioral responses and changes in the balance of the autonomic nervous system (pilot study). J. Phys.: Conf. Ser, 2020, Vol. 1611, рр. 012054.

5. Popadyuk V.I., Kastyro I.V., Ermakova N.V., Torshin V.I. Septoplasty and tonsillectomy: acute stress response as a measure of effectiveness of local anesthetics. Vestn Otorinolaringol, 2016, Vol. 81(3), рр. 7–11.

6. Karimi S., Sadeghi M., Amali A., Saedi B. Effect of Photobiomodulation on Ecchymosis after Rhinoplasty: A Randomized SingleBlind Controlled Trial. Aesthetic Plast Surg, 2020, Vol. 44 №5, рр. 1685–1691.

7. Suchonwanit P., Chalermroj N., Khunkhet S. Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: a 24-week, randomized, double-blind, sham devicecontrolled trial. Lasers Med Sci, 2018, Vol. 2018, рр. 1–8.

8. Alegre-Sánchez A., Saceda-Corralo D., Segurado-Miravalles G., de Perosanz-Lobo D., Fonda-Pascual P., Moreno-Arrones O.M., Buendía-Castaño D., Perez-García B., Boixeda P. Pulsed dye laser on ecchymoses: clinical and histological assessment. Lasers Med Sci, 2018, Vol. 33(3), рр. 683–688.

9. Zein R., Selting W., Hamblin M.R. Review of light parameters and photobiomodulation efficacy: dive into complexity. J. Biomed. Opt, 2018, Vol. 23, рр. 120901.

10. Costa M.S., Pinfildi C.E., Gomes H.C., Liebano R.E., Arias V.E., Santos Silveira T., Ferreira L.M. Effect of low-level laser therapy with output power of 30 mW and 60 mW in the viability of a random skin flap. Photomed Laser Surg, 2010, Vol. 28(1), рр. 57–61.

11. Santos F.T., Santos R.S., P.L., Weckwerth V., Dela Coleta Pizzol K.E., Pereira Queiroz T. Is low-level laser therapy effective on sensorineural recovery after bilateral sagittal split osteotomy? Randomized trial. J Oral Maxillofac Surg, 2019, Vol. 77(1), рр. 164–173.

12. Mussttaf R.A., Jenkins D.F., Jha A.N. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol, 2019, Vol. 95(2), рр. 120–143.

13. Chung H., Dai T., Sharma S.K., Huang Y.-Y. et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng, 2012,Vol. 40, рр. 516–533.

14. Arany P.R., Cho A., Hunt T.D., Sidhu G. et al. Mooney D.J. Photoactivatio of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med, 2014, Vol. 6, рр. 238–269.

15. Naik K. A Novel Way of Trans-Septal Splint Suturing Without Nasal Packing for Septoplasty. Indian J Otolaryngol Head Neck Surg, 2015, Vol.67(1), рр. 48–50.

16. Findikcioglu K., Findikcioglu F., Demirtas Y., Yavuzer R., Ayhan S., Atabay K. Effect of the menstrual cycle on intraoperative bleeding in rhinoplasty patients. Eur J Plast Surg, 2009, Vol. 32, рр. 77–81.

17. Kazemikhoo N., Vaghardoost R., Dahmardehei M., Mokmeli S., Momeni M., Nilforoushzadeh M.A., Ansari F., Razagi M.R., Razagi Z., Amirkhani M.A., Masjedi M.R. Evaluation of the effects of low level laser therapy on the healing process after skin graft surgery in burned patients (a randomized clinical trial). J Lasers Medi Sci, 2018, Vol. 9(2), рр. 139.

18. Tchanque-Fossuo C.N., Ho D., Dahle S.E., Koo E., Li C.-S., Jagdeo R.R.I., J. A systematic review of lowlevel light therapy for treatment of diabetic foot ulcer. Wound Repair Regen, 2016, Vol. 24(2), рр. 418–426.

19. Wang W., Jiang W., Tang C., Zhang X., Xiang J. Clinical efficacy of low-level laser therapy in plantar fasciitis: a systematic review and meta-analysis. Medicine, 2019, Vol. 98(3), рр. 14088.

20. Hersant B., SidAhmed-Mezi M., Bosc R., Meningaud J.P. Current indications of low-level laser therapy in plastic surgery: a review. Photomed Laser Surg, 2015., Vol. 33(5), рр. 283–297.

21. Enwemeka C.S., Parker J.C., Dowdy D.S., Harkness E.E., Sanford L.E., Woodruff L.D. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Therapy, 2004, Vol. 22(4), рр. 323–329.

22. Salehpour F., Gholipour-Khalili S., Farajdokht F., Kamari F., Walski T., Hamblin M.R., DiDuro J.O., Cassano P. Therapeutic potential of intranasal photobiomodulation therapy for neurological and neuropsychiatric disorders: a narrative review. Rev Neurosci, 2020, Vol. 31(3), рр. 269–286.

23. Hennessy M., Hamblin M.R. Photobiomodulation and the brain: a new paradigm. J. Opt, 2016, Vol. 19, рр. 013003.

24. Liu T.C.-Y., Wu D.-F., Gu Z.-Q., Wu M. Applications of intranasal low intensity laser therapy in sports medicine. J. Innov. Opt. Health Sci, 2010, Vol. 3, рр. 1–16.

25. Liu T.C.-Y., Cheng L., Su W.-J., Zhang Y.-W., Shi Y., Liu A.-H., Zhang L.-L., Qian, Z.-Y. Randomized, double-blind, and placebo-controlled clinic report of intranasal low-intensity laser therapy on vascular diseases. Int. J. Photoenergy, 2012, Vol. 489713, рр. 1–5.

26. Gao X., Zhi P., Wu X. Low-energy semiconductor laser intranasal irradiation of the blood improves blood coagulation status in normal pregnancy at term. Nan Fang Yi Ke Da Xue Xue Bao, 2008, Vol. 28, рр. 1400–1401.

27. Elwood P.C., Pickering J., Gallacher J.E. Cognitive function and blood rheology: results from the Caerphilly cohort of older men. // Age Ageing. – 2001. – Vol. 30. – 135–139.

28. Bersani I., Piersigilli F., Gazzolo D., Campi F., Savarese I., Dotta A., Tamborrino P.P., Auriti C., Di Mambro C. Heart rate variability as possible marker of brain damage in neonates with hypoxic ischemic encephalopathy: a systematic review. European Journal of Pediatrics, 2020, Vol. 27, рр. 1–11.

29. Celiker M., Cicek Y., Tezi S., Ozgur A., Polat H.B., Dursun E. Effect of Septoplasty on the Heart Rate Variability in Patients With Nasal Septum Deviation. J Craniofac Surg, 2018, Vol. 29(2), рр. 445–448.

30. Kastyro I.V., Reshetov I.V., Khamidulin G.V. et al. The Effect of Surgical Trauma in the Nasal Cavity on the Behavior in the Open Field and the Autonomic Nervous System of Rats. Doklady Biochemistry and Biophysics, 2020, Vol. 492, рр.121–123.

31. Dolgalev Al.Al., Svyatoslavov D.S., Pout V.A., Reshetov I.V., Kastyro I.V. Effectiveness of the Sequential Use of Plastic and Titanium Implants for Experimental Replacement of the Mandibular Defect in Animals using Preliminary Digital Design. Doklady Biochemistry and Biophysics, 2021, Vol. 496, рр. 36–39.

32. Gao Z.-S., Zhang L., Qin C.-l. The relationship between hemorheological changes and the anxiety and depression symptoms in schizophrenia. Chin. J. Hemorheol, 2004, Vol. 1.

33. Xiao X., Guo Y., Chu X., Jia S., Zheng X., Zhou C. Effects of low power laser irradiation in nasal cavity on cerebral blood flow perfusion of patients with brain infarction. Chin. J. Phys. Med, 2005, Vol. 27, рр. 418–420.

34. Caldieraro M.A., Sani G., Bui E., Cassano P. Long-term near-infrared photobiomodulation for anxious depression complicated by Takotsubo cardiomyopathy // J. Clin. Psychopharmacol, 2018, Vol. 38, рр. 268–270.

35. Dou Z., Xiquan H., Zhu H. The effects of two kinds of laser irradiation on patients with brain lesion. Chin. J. Phys. Med. Rehabil, 2003, Vol. 2, рр. 38–43.


Review

For citations:


Kastyro I.V., Romanko Yu.S., Muradov G.M., Popadyuk V.I., Kalmykov I.K., Kostyaeva M.G., Gushchina Yu.Sh., Dragunova S.G. Photobiomodulation of acute pain syndrome after septoplasty. Biomedical Photonics. 2021;10(2):34-41. https://doi.org/10.24931/2413-9432-2021-10-2-34-41

Views: 1227


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)