Роль трансмембранных переносчиков в накоплении 5-АЛК-индуцированного протопорфирина IX в опухолевых клетках
https://doi.org/10.24931/2413-9432-2024-13-2-43-48
Аннотация
Одной из причин различий в эффективности фотодинамической терапии с применением 5-аминолевулиновой кислоты (5-АЛК) при различных типах злокачественных новообразований могут быть особенности экспрессии в этих тканях мембранных транспортеров, участвующих в переносе самой 5-АЛК в опухолевые и нормальные клетки, а также в выведении из клеток предшественников фотоактивного протопорфирина IX (ППIX) – уро-, копро- и протопорфириногенов. Повышенная экспрессия первых связана с увеличением интенсивности синтеза ППIX. При повышении экспрессии вторых наблюдается снижение скорости синтеза ППIX. В настоящем обзоре описаны основные транспортеры 5-АЛК, уро-, копро- и протопорфириногенов, приведены данные об их экспрессии в различных тканях, обсуждены возможности прогнозирования эффективности фотодинамической терапии с учетом экспрессии указанных транспортеров в злокачественных тканях.
Об авторах
В. И. Иванова-РадкевичРоссия
Москва
О. М. Кузнецова
Россия
Москва
Е. В. Филоненко
Россия
Москва
Список литературы
1. Filonenko E. V. Clinical implementation and scientific development of photodynamic therapy in Russia in 2010-2020 // Biomed. Photonics. – 2021. – Т. 10. – С. 4-22.
2. Zharkova N. N. et al. Fluorescence observations of patients in the course of photodynamic therapy of cancer with the photosensitizer PHOTOSENS // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 400-403.
3. Sokolov V. V. et al. Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with the photosensitizer PHO-TOGEM // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 375-380.
4. Filonenko E. V. et al. Photodynamic therapy in the treatment of intraepithelial neoplasia of the cervix, vulva and vagina // Bio-medical Photonics. – 2021. – Т. 9. – №. 4. – С. 31-39. https://doi.org/10.24931/2413-9432-2020-9-4-31-39.
5. Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of psoriasis // Biomedical Photonics. – 2023. – Т. 12. – №. 1. – С. 28-36. doi: 10.24931/2413-9432–2023-12-1-28-36.
6. Ivanova-Radkevich V. I. Biochemical basis of selective accumulation and targeted delivery of photosensitizers to tumor tissues // Biochemistry (Moscow). – 2022. – Т. 87. – №. 11. – С. 1226-1242. https://doi.org/10.1134/S0006297922110025.
7. Lai H. W., Nakayama T., Ogura S. Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis // International Journal of Clinical Oncology. – 2021. – Т. 26. – С. 26-33
8. Brandsch M. Drug transport via the intestinal peptide transporter PepT1 // Current opinion in pharmacology. – 2013. – Т. 13. – №. 6. – С. 881-887.
9. Döring F. et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications // The Journal of clinical investigation. – 1998. – Т. 101. – №. 12. – С. 2761-2767.
10. Hagiya Y. et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer // Photodiagnosis and photodynamic therapy. – 2013. – Т. 10. – №. 3. – С. 288-295.
11. Xie Y., Hu Y., Smith D. E. The proton‐coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5‐aminolevulinic acid // British journal of pharmacology. – 2016. – Т. 173. – №. 1. – С. 167-176.
12. Jappar D. et al. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice // Drug metabolism and disposition. – 2010. – Т. 38. – №. 10. – С. 1740-1746.
13. Neumann J., Brandsch M. δ-Aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct // Journal of Pharmacology and Experimental Therapeutics. – 2003. – Т. 305. – №. 1. – С. 219-224.
14. Chung C. W. et al. Aminolevulinic acid derivatives-based photodynamic therapy in human intra-and extrahepatic cholangiocarcinoma cells // European Journal of Pharmaceutics and Biopharmaceutics. – 2013. – Т. 85. – №. 3. – С. 503-510.
15. Hagiya Y. et al. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro //Photodiagnosis and photodynamic therapy. – 2012. – Т. 9. – №. 3. – С. 204-214.
16. Lai H. W. et al. Novel strategy to increase specificity of ALA-Induced PpIX accumulation through inhibition of transporters involved in ALA uptake // Photodiagnosis and Photodynamic Therapy. – 2019. – Т. 27. – С. 327-335.
17. Tchernitchko D. et al. A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease // Journal of the American Society of Nephrology. – 2017. – Т. 28. – №. 6. – С. 1924-1932.
18. Xiang J. et al. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes // Brain research. – 2006. – Т. 1122. – №. 1. – С. 18-23.
19. Anderson C. M. H. et al. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carri ers coexpressed in the small intestine // Journal of Pharmacology and Experimental Therapeutics. – 2010. – Т. 332. – №. 1. – С. 220-228.
20. Boll M. et al. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters // Journal of Biological Chemistry. – 2002. – Т. 277. – №. 25. – С. 22966-22973.
21. Kristensen A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation //Pharmacological reviews. – 2011. – Т. 63. – №. 3. – С. 585-640.
22. Zhou Y. et al. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents // Journal of Biological Chemistry. – 2012. – Т. 287. – №. 42. – С. 35733-35746.
23. https://www.proteinatlas.org/ENSG00000115657-ABCB6/tissue
24. Tran T. T. et al. Neurotransmitter Transporter Family Including SLC 6 A 6 and SLC 6 A 13 Contributes to the 5‐Aminolevulinic Acid (ALA)‐Induced Accumulation of Protoporphyrin IX and Photodamage, through Uptake of ALA by Cancerous Cells // Photochemistry and photobiology. – 2014. – Т. 90. – №. 5. – С. 1136-1143.
25. Bermudez Moretti M. et al. δ-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by BETA transporters // British journal of cancer. – 2002. – Т. 87. – №. 4. – С. 471-474.
26. Manceau H. et al. TSPO2 translocates 5‐aminolevulinic acid into human erythroleukemia cells // Biology of the Cell. – 2020. – Т. 112. – №. 4. – С. 113-126.
27. Krishnamurthy P., Schuetz J. D. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival // Biometals. – 2005. – Т. 18. – С. 349-358.
28. Desuzinges-Mandon E. et al. ABCG2 transports and transfers heme to albumin through its large extracellular loop // Journal of biological chemistry. – 2010. – Т. 285. – №. 43. – С. 33123-33133.
29. Horsey A. J. et al. The multidrug transporter ABCG2: still more questions than answers// Biochemical Society Transactions. – 2016. – Т. 44. – №. 3. – С. 824-830.
30. Wu X. G., Peng S. B., Huang Q. Transcriptional regulation of breast cancer resistance protein // Yi Chuan= Hereditas. – 2012. – Т. 34. – №. 12. – С. 1529-1536.
31. Krishnamurthy P. et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme // Journal of Biological Chemistry. – 2004. – Т. 279. – №. 23. – С. 24218-24225.
32. Morita M. et al. Fluorescence‐based discrimination of breast cancer cells by direct exposure to 5‐aminolevulinic acid // Cancer medicine. – 2019. – Т. 8. – №. 12. – С. 5524-5533.
33. Boswell-Casteel R. C., Fukuda Y., Schuetz J. D. ABCB6, an ABC transporter impacting drug response and disease // The AAPS journal. – 2018. – Т. 20. – С. 1-10.
34. Quigley J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis // Cell. – 2004. – Т. 118. – №. 6. – С. 757-766.
35. Quigley J. G. et al. Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia // Blood, The Journal of the American Society of Hematology. – 2000. – Т. 95. – №. 3. – С. 1093-1099.
36. Alves L. R. et al. Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells // PLoS One. – 2011. – Т. 6. – №. 7. – С. e21358.
37. Chiabrando D. et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation // The Journal of clinical investigation. – 2012. – Т. 122. – №. 12. – С. 4569-4579.
38. Zhou S. et al. FLVCR1 predicts poor prognosis and promotes malignant phenotype in esophageal squamous cell carcinoma via upregulating CSE1L // Frontiers in Oncology. – 2021. – Т. 11. – С. 660955.
39. Brown J. K., Fung C., Tailor C. S. Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1 // Journal of virology. – 2006. – Т. 80. – №. 4. – С. 1742-1751.
40. Duffy S. P. et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme // Molecular and cellular biology. – 2010. – Т. 30. – №. 22. – С. 5318-5324.
41. Hayashi M. et al. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid // PLoS One. – 2015. – Т. 10. – №. 3. – С. e0122351.
Рецензия
Для цитирования:
Иванова-Радкевич В.И., Кузнецова О.М., Филоненко Е.В. Роль трансмембранных переносчиков в накоплении 5-АЛК-индуцированного протопорфирина IX в опухолевых клетках. Biomedical Photonics. 2024;13(2):43-48. https://doi.org/10.24931/2413-9432-2024-13-2-43-48
For citation:
Ivanova-Radkevich V.I., Kuznetsova O.M., Filonenko E.V. The role of membrane transport proteins in 5-ALA-induced accumulation of protoporphyrin iX in tumor cells. Biomedical Photonics. 2024;13(2):43-48. https://doi.org/10.24931/2413-9432-2024-13-2-43-48