Preview

Biomedical Photonics

Расширенный поиск

Роль трансмембранных переносчиков в накоплении 5-АЛК-индуцированного протопорфирина IX в опухолевых клетках

https://doi.org/10.24931/2413-9432-2024-13-2-43-48

Аннотация

Одной из причин различий в эффективности фотодинамической терапии с применением 5-аминолевулиновой кислоты (5-АЛК) при различных типах злокачественных новообразований могут быть особенности экспрессии в этих тканях мембранных транспортеров, участвующих в переносе самой 5-АЛК в опухолевые и нормальные клетки, а также в выведении из клеток предшественников фотоактивного протопорфирина IX (ППIX) – уро-, копро- и протопорфириногенов. Повышенная экспрессия первых связана с увеличением интенсивности синтеза ППIX. При повышении экспрессии вторых наблюдается снижение скорости синтеза ППIX. В настоящем обзоре описаны основные транспортеры 5-АЛК, уро-, копро- и протопорфириногенов, приведены данные об их экспрессии в различных тканях, обсуждены возможности прогнозирования эффективности фотодинамической терапии с учетом экспрессии указанных транспортеров в злокачественных тканях.

Об авторах

В. И. Иванова-Радкевич
Российский Университет дружбы народов
Россия

Москва



О. М. Кузнецова
Российский Университет дружбы народов
Россия

Москва



Е. В. Филоненко
«Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Министерства здравоохранения Российской Федерации
Россия

Москва



Список литературы

1. Filonenko E. V. Clinical implementation and scientific development of photodynamic therapy in Russia in 2010-2020 // Biomed. Photonics. – 2021. – Т. 10. – С. 4-22.

2. Zharkova N. N. et al. Fluorescence observations of patients in the course of photodynamic therapy of cancer with the photosensitizer PHOTOSENS // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 400-403.

3. Sokolov V. V. et al. Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with the photosensitizer PHO-TOGEM // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 375-380.

4. Filonenko E. V. et al. Photodynamic therapy in the treatment of intraepithelial neoplasia of the cervix, vulva and vagina // Bio-medical Photonics. – 2021. – Т. 9. – №. 4. – С. 31-39. https://doi.org/10.24931/2413-9432-2020-9-4-31-39.

5. Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of psoriasis // Biomedical Photonics. – 2023. – Т. 12. – №. 1. – С. 28-36. doi: 10.24931/2413-9432–2023-12-1-28-36.

6. Ivanova-Radkevich V. I. Biochemical basis of selective accumulation and targeted delivery of photosensitizers to tumor tissues // Biochemistry (Moscow). – 2022. – Т. 87. – №. 11. – С. 1226-1242. https://doi.org/10.1134/S0006297922110025.

7. Lai H. W., Nakayama T., Ogura S. Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis // International Journal of Clinical Oncology. – 2021. – Т. 26. – С. 26-33

8. Brandsch M. Drug transport via the intestinal peptide transporter PepT1 // Current opinion in pharmacology. – 2013. – Т. 13. – №. 6. – С. 881-887.

9. Döring F. et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications // The Journal of clinical investigation. – 1998. – Т. 101. – №. 12. – С. 2761-2767.

10. Hagiya Y. et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer // Photodiagnosis and photodynamic therapy. – 2013. – Т. 10. – №. 3. – С. 288-295.

11. Xie Y., Hu Y., Smith D. E. The proton‐coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5‐aminolevulinic acid // British journal of pharmacology. – 2016. – Т. 173. – №. 1. – С. 167-176.

12. Jappar D. et al. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice // Drug metabolism and disposition. – 2010. – Т. 38. – №. 10. – С. 1740-1746.

13. Neumann J., Brandsch M. δ-Aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct // Journal of Pharmacology and Experimental Therapeutics. – 2003. – Т. 305. – №. 1. – С. 219-224.

14. Chung C. W. et al. Aminolevulinic acid derivatives-based photodynamic therapy in human intra-and extrahepatic cholangiocarcinoma cells // European Journal of Pharmaceutics and Biopharmaceutics. – 2013. – Т. 85. – №. 3. – С. 503-510.

15. Hagiya Y. et al. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro //Photodiagnosis and photodynamic therapy. – 2012. – Т. 9. – №. 3. – С. 204-214.

16. Lai H. W. et al. Novel strategy to increase specificity of ALA-Induced PpIX accumulation through inhibition of transporters involved in ALA uptake // Photodiagnosis and Photodynamic Therapy. – 2019. – Т. 27. – С. 327-335.

17. Tchernitchko D. et al. A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease // Journal of the American Society of Nephrology. – 2017. – Т. 28. – №. 6. – С. 1924-1932.

18. Xiang J. et al. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes // Brain research. – 2006. – Т. 1122. – №. 1. – С. 18-23.

19. Anderson C. M. H. et al. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carri ers coexpressed in the small intestine // Journal of Pharmacology and Experimental Therapeutics. – 2010. – Т. 332. – №. 1. – С. 220-228.

20. Boll M. et al. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters // Journal of Biological Chemistry. – 2002. – Т. 277. – №. 25. – С. 22966-22973.

21. Kristensen A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation //Pharmacological reviews. – 2011. – Т. 63. – №. 3. – С. 585-640.

22. Zhou Y. et al. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents // Journal of Biological Chemistry. – 2012. – Т. 287. – №. 42. – С. 35733-35746.

23. https://www.proteinatlas.org/ENSG00000115657-ABCB6/tissue

24. Tran T. T. et al. Neurotransmitter Transporter Family Including SLC 6 A 6 and SLC 6 A 13 Contributes to the 5‐Aminolevulinic Acid (ALA)‐Induced Accumulation of Protoporphyrin IX and Photodamage, through Uptake of ALA by Cancerous Cells // Photochemistry and photobiology. – 2014. – Т. 90. – №. 5. – С. 1136-1143.

25. Bermudez Moretti M. et al. δ-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by BETA transporters // British journal of cancer. – 2002. – Т. 87. – №. 4. – С. 471-474.

26. Manceau H. et al. TSPO2 translocates 5‐aminolevulinic acid into human erythroleukemia cells // Biology of the Cell. – 2020. – Т. 112. – №. 4. – С. 113-126.

27. Krishnamurthy P., Schuetz J. D. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival // Biometals. – 2005. – Т. 18. – С. 349-358.

28. Desuzinges-Mandon E. et al. ABCG2 transports and transfers heme to albumin through its large extracellular loop // Journal of biological chemistry. – 2010. – Т. 285. – №. 43. – С. 33123-33133.

29. Horsey A. J. et al. The multidrug transporter ABCG2: still more questions than answers// Biochemical Society Transactions. – 2016. – Т. 44. – №. 3. – С. 824-830.

30. Wu X. G., Peng S. B., Huang Q. Transcriptional regulation of breast cancer resistance protein // Yi Chuan= Hereditas. – 2012. – Т. 34. – №. 12. – С. 1529-1536.

31. Krishnamurthy P. et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme // Journal of Biological Chemistry. – 2004. – Т. 279. – №. 23. – С. 24218-24225.

32. Morita M. et al. Fluorescence‐based discrimination of breast cancer cells by direct exposure to 5‐aminolevulinic acid // Cancer medicine. – 2019. – Т. 8. – №. 12. – С. 5524-5533.

33. Boswell-Casteel R. C., Fukuda Y., Schuetz J. D. ABCB6, an ABC transporter impacting drug response and disease // The AAPS journal. – 2018. – Т. 20. – С. 1-10.

34. Quigley J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis // Cell. – 2004. – Т. 118. – №. 6. – С. 757-766.

35. Quigley J. G. et al. Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia // Blood, The Journal of the American Society of Hematology. – 2000. – Т. 95. – №. 3. – С. 1093-1099.

36. Alves L. R. et al. Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells // PLoS One. – 2011. – Т. 6. – №. 7. – С. e21358.

37. Chiabrando D. et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation // The Journal of clinical investigation. – 2012. – Т. 122. – №. 12. – С. 4569-4579.

38. Zhou S. et al. FLVCR1 predicts poor prognosis and promotes malignant phenotype in esophageal squamous cell carcinoma via upregulating CSE1L // Frontiers in Oncology. – 2021. – Т. 11. – С. 660955.

39. Brown J. K., Fung C., Tailor C. S. Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1 // Journal of virology. – 2006. – Т. 80. – №. 4. – С. 1742-1751.

40. Duffy S. P. et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme // Molecular and cellular biology. – 2010. – Т. 30. – №. 22. – С. 5318-5324.

41. Hayashi M. et al. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid // PLoS One. – 2015. – Т. 10. – №. 3. – С. e0122351.


Рецензия

Для цитирования:


Иванова-Радкевич В.И., Кузнецова О.М., Филоненко Е.В. Роль трансмембранных переносчиков в накоплении 5-АЛК-индуцированного протопорфирина IX в опухолевых клетках. Biomedical Photonics. 2024;13(2):43-48. https://doi.org/10.24931/2413-9432-2024-13-2-43-48

For citation:


Ivanova-Radkevich V.I., Kuznetsova O.M., Filonenko E.V. The role of membrane transport proteins in 5-ALA-induced accumulation of protoporphyrin iX in tumor cells. Biomedical Photonics. 2024;13(2):43-48. https://doi.org/10.24931/2413-9432-2024-13-2-43-48

Просмотров: 270


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)