Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating
https://doi.org/10.24931/2413-9432-2016-5-2-4-12
Abstract
About the Authors
Yu. S. MaklyginaRussian Federation
Moscow
A. S. Sharova
Russian Federation
Moscow
B. Kundu
India
Kolkata
V. K. Balla
India
Kolkata
R. Steiner
Germany
Moscow;
Ulm
V. B. Loschenov
Russian Federation
Moscow
References
1. Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: recent advances and challenges, Crit. Rev. Biomed. Eng., 2012, Vol. 40, pp. 363-408.
2. Noh Y.K., Du .P, Kim I.G. Ko J., Kim S.W., Park K. Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells, Biomater Res., 2016, Vol. 20(6).
3. Legemate K., Tarafder S., Jun Y., Lee C.H. Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds, J Dent Res., 2016, Vol. 6.
4. Padmanabhan S.K., Gervaso F., Carrozzo M., Scalera F., Sannino A., Licciulli A. Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering, Ceram. Int., 2013, Vol. 39(1), pp. 619-627.
5. Hosseinkhani M., Mehrabani D., Karimfar M.H., Bakhtiyari, S., Manafi A., Shirazi R. Tissue engineered scaffolds in regenerative medicine, World J. Plast. Surg., 2014, Vol. 3(1), pp. 3-7.
6. Tevlin R., McArdle A., Atashroo D., Walmsley G.G., SenarathYapa K., Zielins E.R., Paik K.J. Biomaterials for craniofacial bone engineering, J. Dent. Res., 2014, Vol. 93, pp. 1187-1195.
7. Galili U., Avoiding detrimental human immune response against Mammalian extracellular matrix implants, Tissue Eng. Part B Rev., 2015, Vol. 21, pp. 231-241.
8. Kharraz Y., Guerra J., Mann C.J., Serrano A.L., Munoz-Canoves P. Macrophage plasticity and the role of inflammation in skeletal muscle repair, Mediators Inflamm, 2013, Vol. 2013. Available at: http://dx.doi.org/10.1155/2013/491497
9. Brown B.N., Sicari B.M., Badylak S.F. Rethinking regenerative medicine: a macrophage-centered approach, Front Immunol, 2014, Vol. 5. Available at: http://dx.doi.org/10.3389/fimmu.2014.00510
10. Boehler R.M., Graham J.G., Shea L.D. Tissue engineering tools for modulation of the immune response, Biotechniques, 2011, Vol. 51, No. 4, pp. 239-254.
11. Gardner A.B., Lee S.K., Woods E.C., Acharya A.P. Biomaterials-based modulation of the immune system, Biomed. Res. Int., 2013, Vol. 2013. Available at: http://dx.doi.org/10.1155/2013/732182
12. Franz S., Rammelt S., Scharnweber D., Simon J.C. Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials, Biomaterials, 2011, Vol. 32, pp. 6692-6709.
13. Anderson J.M. Inflammatory response to implants, ASAIO Trans, 1988, Vol. 34, pp. 101-107.
14. Major M.R., Wong V.W., Nelson E.R., Longaker M.T., Gurtner G.C. The foreign body response: at the interface of surgery and bioengineering, Plast. Reconstr. Surg., 2015, Vol. 135, pp. 1489-1498.
15. Londono R., Badylak S.F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling, Ann. Biomed. Eng., 2014, Vol. 43, pp. 577-592.
16. Crupi A., Costa A., Tarnok A., Melzer S., Teodori L. Inflammation in tissue engineering: The Janus between engraftment and rejection, Eur J Immunol, 2015, Vol. 45(12), pp. 3222-36.
17. Kzhyshkowska J., Gudima A., Riabov V., Dollinger C., Lavalle P., Vrana N.E. Macrophage responses to implants: prospects for personalized medicine, J Leukoc Biol, 2015, Vol. 98(6), pp. 953-962.
18. Van Oirschot B.A., Eman R.M., Habibovic P., Leeuwenburgh S.C., Tahmasebi Z., Weinans H., Alblas J., Meijer G.J., Jansen J.A., van den Beucken J.J. Osteophilic properties of bone implant surface modifications in a cassette model on a decorticated goat spinal transverse process, Acta Biomater, 2016 (in press).
19. Nakata H., Kuroda S., Tachikawa N., Okada E., Akatsuka M., Kasugai S., Kondo H. Histological and micro-computed tomographic observations after maxillary sinus augmentation with poroushydr oxyapatite alloplasts: a clinical case series, Springerplus, 2016, Vol. 5. Available at: http://springerplus.springeropen.com/articles/10.1186/s40064-016-1885-2
20. Pallela R., Venkatesan J., Janapala V.R., Kim S.K. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering, J Biomed Mater Res Part A, 2012, Vol. 100(2), pp. 486-495.
21. Asaoka T., Ohtake S., Furukawa K.S., Tamura A., Ushida T.J. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering, Biomed Mater Res A, 2013, Vol. 101(11), pp. 3295-300.
22. Nandi S.K., Kundu B., Mukherjee J., Mahato A., Datta S., Balla V.K. Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration, Mater Sci Eng C Mater Biol Appl, 2015, Vol. 49, pp. 816-23.
23. Balla V.K., Bodhak S., Bose S., Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties, Acta Biomater, 2010, Vol. 6(8), pp. 3349-59.
24. Ferraz M.P., Mateus A.Y., Sousa J.C., Monteiro F.J. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts, J. Biomed. Mater. Res. A., 2007, Vol. 81, pp. 994-1004.
25. Guo Y.J., Long T., Chen W., Ning C.Q., Zhu Z.A., Guo Y.P. Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microsphere, Mater. Sci. Eng. C., 2013, Vol. 33, pp. 3583-3591.
26. Selvakumar M., Srivastava P., Pawar H.S., Francis N.K., Das B., Sathishkumar G., Subramanian B., Jaganathan S.K., George G., Anandhan S., Dhara S., Nando G.B., Chattopadhyay S. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation, ACS Appl Mater Interfaces, 2016, Vol. 8(6), pp. 4086-100.
27. Krishnan A.G., Jayaram L., Biswas R., Nair M. Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded gelatin-hydroxyapatite scaffoldsas a local drug delivery system for osteomyelitis treatment, Tissue Eng Part A, 2015, Vol. 21(7-8), pp. 1422-31.
28. Mututuvari T.M., Harkins A.L, Tran C.D. Facile synthesis, characterization, and antimicrobial activity of cellulose-chitosanhydroxyapatitecomposite material: a potential material for bone tissue engineering, J Biomed Mater Res A, 2013, Vol. 101(11), pp. 3266-77.
29. Afzal M.A., Kalmodia S., Kesarwani P., Basu B., Balani K. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites, J Biomater Appl, 2013, Vol. 27(8), pp. 967-78.
30. Haag P.A., Steiger-Ronay V., Schmidlin P.R. The in Vitro Antimicrobial Efficacy of PDT against eriodontopathogenic Bacteria, Int J Mol Sci, 2015, Vol. 16(11), pp. 27327-27338.
31. Soukos N.S., Ximenez-Fyvie L.A., Hamblin M.R., Socransky S.S., Hasan T. Targeted antimicrobial photochemotherapy, Antimicrob. Agents Chemother., 1998, Vol. 42, pp. 2595-2601.
32. Sharman W.M., Allen C.M., van Lier J.E. Photodynamic therapeutics: Basic principles and clinical applications, Drug Discov. Today, 1999, Vol. 4, pp. 507-517.
33. Braham P., Herron C., Street C., Darveau R. Antimicrobial photodynamic therapy may promote periodontal healing through multiple mechanisms, J. Periodontol., 2009, Vol. 80, pp. 1790-1798.
34. Chan Y., Lai C.H. Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy, Lasers Med. Sci., 2003, Vol. 18, pp. 51-55.
35. Street C.N., Pedigo L.A., Loebel N.G. Energy dose parameters affect antimicrobial photodynamic therapy-mediated eradication of periopathogenic biofilm and planktonic cultures, Photomed. Laser Surg., 2010, Vol. 28 (Suppl. S1), pp. 61-66.
36. Breymayer J., Rück A., Ryabova A.V., Loschenov V.B., Steiner R.W. Fluorescence Investigation of the Effect of Monocytes/Macrophages and Skin Cells on Aluminium Phthalocyanine Nanoparticles, Journal Photodiagnosis and Photodynamic Therapy, 2014, Vol. 11(3), pp. 380-390.
37. Vasilchenko S.Yu., Volkova A.I., Ryabova A.V., Loschenov V.B., Konov V.I., Mamedov A.A., Kuzminand S.G., Lukyanets E.A. Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology, J. Biophoton., 2010, Т. 3, No. 5-6, pp. 336-346.
38. Oertel M., Schastak S.I., Tannapfel A., Hermann R., Sack U., Mossner J., Berr F. Novel bacteriochlorin for high tissue-penetration: photodynamic properties in human biliary tract cancer cells in vitro and in a mouse tumour model, J. Photochem. Photobiol. B., 2003, Vol. 71, pp. 1-10.
39. Mazor O., Brandis A., Plaks V., Neumark E., Rosenbach-Belkin V., Salomon Y., Scherz A. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution, and vascular targeted photodynamic activity against melanoma tumors, Photochem. Photobiol., 2005, Vol. 81, pp. 342-351.
40. Rovers J.P., de Jode M.L., Rezzoug H., Grahn M.F. In vivo photodynamic characteristics of the near-infrared photosensitizer 5, 10, 15, 20-tetrakis (m-hydroxyphenyl) bacteriochlorin, Photochem. Photobiol., 2000, Vol. 72, pp. 358-364.
41. Mironov A.F., Grin M.A., Karmakova T.A., Plyutinskaya A.D., Yakubovskaya R.I., Feofanov A.V., Vini P. New natural bacteriochlorophyll a-based photosensitizers for PDT of cancer, Rossijskij bioterapevticheskij zhurnal, 2003, T. 2, No. 1, pp. 33-34. (in Russian).
42. Yakubovskaya R.I., Plotnikova E.A., Morozova N.B., Grin M.A., Mironov A.F. Aminoamides in the family of bacteriochlorophyll a and their in vitro and in vivo photodynamic activity, Fotodinamicheskaya terapiya i fotodiagnostika, 2013, No. 3, pp. 29-30. (in Russian).
43. Grin M.A., Pantyushenko I.V., Plotnikova E.A., Plyutinskaya A.D., Malygina A.I., Kashirtseva I.V., Mikhajlovskaya A.A., Yakubovskaya R.I., Kaplan M.A., Mironov A.F. New bacteriopurpurinimidebased photosensitizers and their photodynamic antitumor activity, Fotodinamicheskaya terapiya i fotodiagnostika, 2013, No. 3, pp. 33-34. (in Russian).
44. Reshetnikov R.I., Grin M.A., Kharitonova O.V., Kozlov A.C., Krasnovskij A.A., Feofanov A.V., Ermakova D.E., Mironov A.F. Bacteriochlorincontaining triplet for combined fluorescence diagnosis and photodynamic therapy of cancer, Fotodinamicheskaya terapiya i fotodiagnostika, 2013, No. 3, pp. 34. (in Russian).
45. Mironov A.F., Grin M.A., Tsiprovskij A.G., Segenevich A.V., Dzardanov D.V., Golovin K. V., Tsygankov A.A., Shim Ya.K. New bacteriochlorinbased photosensitizers for photodynamic therapy of cancer, Bioorganicheskaya khimiya, 2003, T. 29, No. 2, pp. 214-221. (in Russian).
46. Loschenov V.B., Konov V.I., Prokhorov A.M. Photodynamic therapy and fluorescence diagnostics, Laser Physics, 2000, Vol. 10, No. 6, pp. 1188-1207.
47. Lin'kov K.G., Berezin A.N., Loschenov V.B. Devices for FD and PDT, Ross. bioterapevt. zhurnal., 2004, T. 3, No. 2, p. 54. (in Russian).
Review
For citations:
Maklygina Yu.S., Sharova A.S., Kundu B., Balla V.K., Steiner R., Loschenov V.B. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating. Biomedical Photonics. 2016;5(2):4-12. https://doi.org/10.24931/2413-9432-2016-5-2-4-12