Спектрально-люминесцентные свойства наночастиц бактериохлорина и фталоцианина алюминия в качестве поверхностного покрытия имплантов на основе гидроксиапатита
https://doi.org/10.24931/2413-9432-2016-5-2-4-12
Аннотация
Об авторах
Ю. С. МаклыгинаРоссия
Москва
А. С. Шарова
Россия
Москва
B. Kundu
Индия
Kolkata
V. K. Balla
Индия
Kolkata
R. Steiner
Германия
Москва;
Ulm
В. Б. Лощенов
Россия
Москва
Список литературы
1. Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: recent advances and challenges // Crit. Rev. Biomed. Eng. – 2012. – Vol. 40. – P. 363-408.
2. Noh Y.K., Du P., Kim I.G. et al. Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells // Biomater Res. – 2016. – Vol. 20(6).
3. Legemate K., Tarafder S., Jun Y., Lee C.H. Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds // J Dent Res. – 2016. – Vol. 6.
4. Padmanabhan S.K., Gervaso F., Carrozzo M. et al. Wollastonite/ hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering // Ceram. Int. – 2013. – Vol. 39(1) – P. 619-627.
5. Hosseinkhani M., Mehrabani D., Karimfar M.H. et al. Tissue engineered scaffolds in regenerative medicine // World J. Plast. Surg. – 2014. – Vol. 3(1). – P. 3-7.
6. Tevlin R., McArdle A., Atashroo D. et al. Biomaterials for craniofacial bone engineering // J. Dent. Res. – 2014. – Vol. 93. – P. 1187-1195.
7. Galili U., Avoiding detrimental human immune response against Mammalian extracellular matrix implants // Tissue Eng. Part B Rev. – 2015. – Vol. 21. – P. 231-241.
8. Kharraz Y., Guerra J., Mann C.J. et al. Macrophage plasticity and the role of inflammation in skeletal muscle repair // Mediators Inflamm. – 2013. – Vol. 2013.
9. Brown B.N., Sicari B.M., Badylak S.F. Rethinking regenerative medicine: a macrophage-centered approach // Front Immunol. – 2014. – Vol. 5.
10. Boehler R.M., Graham J.G., Shea L.D. Tissue engineering tools for modulation of the immune response // Biotechniques. – 2011. – Vol. 51, No. 4. – P. 239-254.
11. Gardner A.B., Lee S.K., Woods E.C., Acharya A.P. Biomaterials-based modulation of the immune system // Biomed. Res. Int. – 2013. – Vol. 2013.
12. Franz S., Rammelt S., Scharnweber D., Simon J.C. Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials // Biomaterials. – 2011. – Vol. 32. – P. 6692-6709.
13. Anderson J.M. Inflammatory response to implants // ASAIO Trans. – 1988. – Vol. 34. – P. 101-107.
14. Major M.R., Wong V.W., Nelson E.R. et al. The foreign body response: at the interface of surgery and bioengineering // Plast. Reconstr. Surg. – 2015. – Vol. 135. – P. 1489-1498.
15. Londono R., Badylak S.F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling // Ann. Biomed. Eng. – 2014. – Vol. 43. – P. 577-592.
16. Crupi A., Costa A., Tarnok A. et al. Inflammation in tissue engineering: The Janus between engraftment and rejection // Eur J Immunol. – 2015. – Vol. 45(12). – P. 3222-36.
17. Kzhyshkowska J., Gudima A., Riabov V. et al. Macrophage responses to implants: prospects for personalized medicine // J Leukoc Biol. – 2015. – Vol. 98(6). – P. 953-962.
18. Van Oirschot B.A., Eman R.M., Habibovic P. et al. Osteophilic properties of bone implant surface modifications in a cassette model on a decorticated goat spinal transverse process // Acta Biomater. – 2016 (in press).
19. Nakata H., Kuroda S., Tachikawa N. et al. Histological and microcomputed tomographic observations after maxillary sinus augmentation with poroushydroxyapatite alloplasts: a clinical case series // Springerplus. 2016. – Vol. 5.
20. Pallela R., Venkatesan J., Janapala V.R., Kim S.K. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering // J Biomed Mater Res Part A. – 2012. – Vol. 100(2). – P. 486–495.
21. Asaoka T., Ohtake S., Furukawa K.S. et al. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering // Biomed Mater Res A. – 2013. – Vol. 101(11). – P. 3295-300.
22. Nandi S.K., Kundu B., Mukherjee J. et al. Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration // Mater Sci Eng C Mater Biol Appl. – 2015. – Vol. 49. – P. 816-23.
23. Balla V.K., Bodhak S., Bose S., Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties // Acta Biomater. – 2010. – Vol. 6(8). – P. 3349-59.
24. Ferraz M.P., Mateus A.Y., Sousa J.C., Monteiro F.J. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts // J. Biomed. Mater. Res. A. – 2007. – Vol. 81. – P. 994-1004.
25. Guo Y.J., Long T., Chen W. et al. Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres // Mater. Sci. Eng. C. – 2013. – Vol. 33. – P. 3583-3591.
26. Selvakumar M., Srivastava P., Pawar H.S. et al. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation // ACS Appl Mater Interfaces. – 2016. – Vol. 8(6). – P. 4086-100.
27. Krishnan A.G., Jayaram L., Biswas R., Nair M. Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded gelatin-hydroxyapatite scaffoldsas a local drug delivery system for osteomyelitis treatment // Tissue Eng Part A. – 2015. – Vol. 21(7-8). – P. 1422-31.
28. Mututuvari T.M., Harkins A.L, Tran C.D. Facile synthesis, characterization, and antimicrobial activity of cellulose-chitosanhydroxyapatitecomposite material: a potential material for bone tissue engineering // J Biomed Mater Res A. – 2013. – Vol. 101(11). – P. 3266-77.
29. Afzal M.A., Kalmodia S., Kesarwani P. et al. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites // J Biomater Appl. – 2013. – Vol. 27(8). – P. 967-78.
30. Haag P.A., Steiger-Ronay V., Schmidlin P.R. The in Vitro Antimicrobial Efficacy of PDT against eriodontopathogenic Bacteria // Int J Mol Sci. – 2015. – Vol. 16(11). – P. 27327-27338.
31. Soukos N.S., Ximenez-Fyvie L.A., Hamblin M.R. et al. Targeted antimicrobial photochemotherapy // Antimicrob. Agents Chemother. – 1998. – Vol. 42. – P. 2595-2601.
32. Sharman W.M., Allen C.M., van Lier J.E. Photodynamic therapeutics: Basic principles and clinical applications // Drug Discov. Today. – 1999. – Vol. 4. – P. 507-517.
33. Braham P., Herron C., Street C., Darveau R. Antimicrobial photodynamic therapy may promote periodontal healing through multiple mechanisms // J. Periodontol. – 2009. – Vol. 80. – P. 1790-1798.
34. Chan Y., Lai C.H. Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy // Lasers Med. Sci. – 2003. – Vol. 18. – P. 51-55.
35. Street C.N., Pedigo L.A., Loebel N.G. Energy dose parameters affect antimicrobial photodynamic therapy-mediated eradication of periopathogenic biofilm and planktonic cultures // Photomed. Laser Surg. – 2010. – Vol. 28 (Suppl. S1). – P. 61-66.
36. Breymayer J., Rück A., Ryabova A.V. et al. Fluorescence Investigation of the Effect of Monocytes/Macrophages and Skin Cells on Aluminium Phthalocyanine Nanoparticles // Journal Photodiagnosis and Photodynamic Therapy. – 2014. – Vol. 11(3). – P. 380-390.
37. Vasilchenko S.Yu., Volkova A.I., Ryabova A.V. et al. Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology // J. Biophoton. – 2010. – Т. 3, No. 5-6. – Р. 336-346.
38. Oertel M., Schastak S.I., Tannapfel A. et al. Novel bacteriochlorin for high tissue-penetration: photodynamic properties in human biliary tract cancer cells in vitro and in a mouse tumour model // J. Photochem. Photobiol. B. – 2003. – Vol. 71. – P. 1-10.
39. Mazor O., Brandis A., Plaks V. et al. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution, and vascular targeted photodynamic activity against melanoma tumors // Photochem. Photobiol. – 2005. – Vol. 81. – P. 342-351.
40. Rovers J.P., de Jode M.L., Rezzoug H., Grahn M.F. In vivo photodynamic characteristics of the near-infrared photosensitizer 5, 10, 15, 20-tetrakis (m-hydroxyphenyl) bacteriochlorin // Photochem. Photobiol. – 2000. – Vol. 72. – P. 358-364.
41. Миронов А.Ф., Грин М.А., Кармакова Т.А., Плютинская А.Д., Якубовская Р.И., Феофанов А.В., Вини П. Новые фотосенсибилизаторы для ФДТ рака на основе природного бактериохлорофилла а // Российский биотерапевтический журнал. – 2003. – Т. 2, № 1. – С. 33-34.
42. Якубовская Р.И., Плотникова Е.А., Морозова Н.Б., Грин М.А., Миронов А.Ф. Аминоамиды в ряду бактериохлорофилла а и их фотоиндуцированная активность в системах in vitro и in vivo // Фотодинамическая терапия и фотодиагностика. – 2013. – № 3. – C. 29-30.
43. Грин М.А., Пантюшенко И.В., Плотникова Е.А., Плютинская А.Д., Малыгина А.И., Каширцева И.В., Михайловская А.А., Якубовская Р.И., Каплан М.А., Миронов А.Ф. Новые фотосенсибилизаторы на основе бактериопурпуринимида и их фотоиндуцированная противоопухолевая активность // Фотодинамическая терапия и фотодиагностика. – 2013. – № 3. – C. 33-34.
44. Решетников Р.И., Грин М.А., Харитонова О.В., Козлов А.C., Красновский А.А., Феофанов А.В., Ермакова Д.Э., Миронов А.Ф. Бактериохлорин-содержащая триада для совместной флюоресцентной диагностики и фотодинамической терапии рака // Фотодинамическая терапия и фотодиагностика. – 2013. – № 3. – C. 34.
45. Миронов А.Ф., Грин М.А., Ципровский А.Г., Сегеневич А.В., Дзарданов Д.В., Головин К. В., Цыганков А.А., Шим Я.К. Новые фотосенсибилизаторы бактериохлоринового ряда для фотодинамической терапии рака // Биоорганическая химия. – 2003. – T. 29, № 2. – C. 214-221.
46. Loschenov V.B., Konov V.I., Prokhorov A.M. Photodynamic therapy and fluorescence diagnostics // Laser Physics. – 2000. – Vol. 10, No. 6. – Р. 1188-1207.
47. Линьков К.Г., Березин А.Н., Лощенов В.Б. Аппаратура для ФД и ФДТ // Росс. биотерапевт. журнал. – 2004. – Т. 3, No. 2. – С. 54.
Рецензия
Для цитирования:
Маклыгина Ю.С., Шарова А.С., Kundu B., Balla V.K., Steiner R., Лощенов В.Б. Спектрально-люминесцентные свойства наночастиц бактериохлорина и фталоцианина алюминия в качестве поверхностного покрытия имплантов на основе гидроксиапатита. Biomedical Photonics. 2016;5(2):4-12. https://doi.org/10.24931/2413-9432-2016-5-2-4-12
For citation:
Maklygina Yu.S., Sharova A.S., Kundu B., Balla V.K., Steiner R., Loschenov V.B. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating. Biomedical Photonics. 2016;5(2):4-12. https://doi.org/10.24931/2413-9432-2016-5-2-4-12