ORIGINAL ARTICLES
Methylene blue (MB) is a promising photosensitizer (PS) for the treatment of pathological neoplasms, since it has both photodynamic activity (under laser irradiation) and redox and catalytic properties (in the absence of light). In the framework of this work, using spectroscopic methods, the effect of intravenous administration of MB on tissue oxygenation of hemoglobin in small animals in vivo in tumor and normal tissues was analyzed. The influence of MB on cell metabolism was analyzed. It has been shown that the use of MB promotes an increase in oxygen consumption by the tumor, and also leads to a shift in metabolism towards oxidative phosphorylation. It was shown that the use of MB contributes to an increase in oxygen consumption by the tumor, and also leads to a shift in metabolism towards oxidative phosphorylation.
In this study, the efficacy of using Sauropus androgynus (L) Merr, a katuk leaf chlorophyll photosensitizer, to reduce Aggregatibacter actinomycetemcomitans and Enterococcus faecalis biofilm was investigated. A red and blue diode laser is used as the light source. The sample was split into four groups: a negative control group, a positive control group, a blue laser treatment group (B), and a red laser treatment group (R), both with and without the addition of katuk leaf chlorophyll 1.6 mg/ml, and with varying densities of laser energy exposure of 2.5 J/cm2, 5 J/cm2, 7.5 J/cm2, and 10 J/cm2. Laser exposure and chlorophyll photosensitizer were tested using ELISA and ANOVA. At an energy density of 10 J/cm2, the optimal bacterial mortality rate was obtained in each treatment group. Namely, in the Aggregatibacter actinomycetemcomitans biofilm, the negative group, the number of deaths was 73.30% using a blue diode laser and 63.25% using a red diode laser. In the positive group, the number of deaths was 86.12% using a blue diode laser and 83.29% using a red diode laser. In the Enterococcus faecalis biofilm, in the negative group, the number of deaths was 67.78% using the blue diode laser and 75.33% using the red diode laser, and in the positive group, the number of deaths was 71.71% using the blue diode laser and 86.41 using a red diode laser. Exposure to blue and red diode lasers activates chlorophyll in katuk leaves, killing bacteria and reducing biofilms.
The bactericidal effect of 632.8 nm low level laser has been studied in order to point out both the effective power and laser exposure time on Staphylococcus aureus, which is reported to be involved in several dermatology problems. Low level laser has been reported to be useful for infected wounds, tissue necrosis, nerve injury, osteoarthritis or other chronic pain syndromes. Numerous studies have been conducted to quantify the effective laser parameters, i.e. dose, power, and exposure time, which ultimately leads toward clinical implementation. Staphylococcus aureus bacteria colonies were exposed to laser doses with powers of both 1 and 3 mW at different exposure times varies between 3 to 30 minutes. The bacterial colonies were isolated from a patient with inflamed wounds. Two sets of bacterial colonies were prepared to be exposed to laser beam. Next, the bacterial colonies were compared before and after exposing them to laser doses. The results showed that laser sessions have reduced the number of the bacterial colonies for both doses; 1 and 3 mw at the different exposure times and concentrations. The results revealed significant dose dependent bactericidal effects of He-Ne laser on Staphylococcus aureus at 3 mW for 30 minutes, which was found to be more effective in reducing the amount of bacteria to the less than 2% of its initial count. The results exhibited the reduction of the number of colonies as a function of exposure time. Appropriate doses of 632.8 nm can kill Staphylococcus aureus, suggesting that a similar effect may be used in clinical cases of bacterial infection.
LITERATURE REVIEWS
Photodynamic therapy (PDT) in the treatment of psoriasis remains the subject of much debate. There is no consensus in the scientific community about effective and safe PDT regimens for psoriasis. Described in the published materials doses and concentrations of photosensitizers for psoriasis, as well as light doses, differ by dozens of times. The purpose of this review is to analyze the efficacy and safety profile of various PDT regimens for psoriasis. Some studies demonstrate 100% effectiveness of the method in certain modes (complete or partial clearance of psoriasis foci after PDT). In particular, such efficiency was obtained with the application of 20% 5-ALA (light dose 15 J/cm2) and 0.1% methylene blue (light dose 15 J/ cm2). The main factor limiting the use of PDT in psoriasis, and in some cases even being the reason for treatment interruption, is severe pain during the irradiation procedure. This requires careful development of PDT regimens in patients with psoriasis.