Preview

Biomedical Photonics

Advanced search

Fluorescent diagnostics of non-melanoma skin cancer

https://doi.org/10.24931/2413-9432-2022-11-4-32-40

Abstract

Fluorescent diagnostics is a promising method for diagnosing non-melanocytic skin tumors, which makes it possible to identify clinically undetectable skin cancer foci and clarify the margin of the tumor lesion. The main drugs for ‹fluorescent diagnostics are drugs based on 5-aminolevulinic acid and its methyl ester. Sensitivity indicators of ‹fluorescent diagnostics in basal cell, squamous cell carcinoma and extramammary Paget’s disease reach 79.0-100.0%, speci city – 55.6-100%. But the effectiveness of this method may be reduced due to hyperkeratinization, keratinization, and the presence of necrotic tissue on the surface of tumor foci. Comparative studies of the results of ‹fluorescent diagnostics and histological mapping during tumor removal using Mohs micrographic surgery showed approximately equal results in the determining of the tumor edges by these methods, which indicates that safe and technically easily performed ‹fluorescent diagnostics can serve as a good alternative to Mohs micrographic surgery, one of the most accurate, but rather labor-intensive and technically complex method for determining the margin of skin cancer foci.

About the Authors

E. V. Filonenko
P.A. Herzen Moscow Oncology Research Center – branch of FSBI NMRRC of the Ministry of Health of the Russian Federation
Russian Federation
Moscow


V. I. Ivanova-Radkevich
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation
Moscow


References

1. The state of cancer care to the population in Russia in 2021 / Ed. Kaprina A.D., Starinsky V.V., Shakhzadova A.O. M.: P.A. Herzen Moscow State Medical Research Institute – branch of the Federal State Budgetary Institution «P.A. Herzen FMIC» of the Ministry of Health of Russia, 2022, p. 239.

2. Filonenko E.V. Fluorescent diagnostics with alasens in patients with skin cancer, Photodynamic therapy and photodiagnostics, 2015, vol.4(1), pp. 14-17. doi.org/10.24931/2413-9432-2015-4-1-14-17.

3. Filonenko E.V. Clinical implementation and scienti c development of photodynamic therapy in Russia in 2010-2020, Biomedical Photonics, 2021 – vol. 10(4), рр. 4-22. doi.org/10.24931/2413-9432-2021-9-4-4-22.

4. Ivanova-Radkevich V.I. Biochemical Basis of Selective Accumulation and Targeted Delivery of Photosensitizers to Tumor Tissues, Biochemistry (Mosc), 2022, vol. 87(11), рр. 1226-1242. doi: 10.1134/S0006297922110025.

5. Szeimies R., Landthaler M. Photodynamic therapy and fluorescence diagnosis of skin cancers, Recent Results Cancer Res, 2002, vol. 160, рр. 240-245. doi: 10.1007/978-3-642-59410-6_28.

6. Andrade C.T., vollet-Filho J.D., Salvio A.G., Bagnato V.S., Kurachi C. Identi cation of skin lesions through aminolaevulinic acid-mediated photodynamic detection, Photodiagnosis Photodyn Ther, 2014, vol. 11(3), рр. 409-415. doi: 10.1016/j.pdpdt.2014.05.006.

7. Neus S., Gambichler T., Bechara F.G., Wöhl S., Lehmann P. Preoperative assessment of basal cell carcinoma using conventional fluorescence diagnosis, Arch Dermatol Res, 2009, vol. 301(4), рр. 289-294. doi: 10.1007/s00403-008-0911-9.

8. Liutkeviciūte-Navickiene J. et al. Fluorescence diagnostics of skin tumors using 5-aminolevulinic acid and its methyl ester, Medicina (Kaunas), 2009, vol. 45(12), рр. 937 doi: 10.3390/medic-ina45120120.

9. Won Y., Hong S.H., Yu H.Y., Kwon Y.H., Yun S.J., Lee S.C., Lee J.B. Photodetection of basal cell carcinoma using methyl 5-aminolaevulinate-induced protoporphyrin IX based on fluorescence image analysis, Clin Exp Dermatol, 2007, vol. 32, pp. 423-429.

10. Filonenko E.V., Ivanova-Radkevich V. Photodynamic therapy in the treatment of extramammary paget’s disease, Biomedical Photonics, 2022, vol. 11(3), pp. 24-34. doi: 10.24931/2413-9432-2022-11-3-24-34.

11. Tierney E., Hanke C.W. Cost e ectiveness of Mohs micrographic surgery, J Drugs Dermatol, 2009, vol. 8, рр. 914-22.

12. E. Tierney, J. Petersen, Hanke C.W. Photodynamic diagnosis of tumor margins using methyl aminolevulinate before Mohs micrographic surgery, J Am Acad Dermatol, 2011, vol. 64(5), рр. 911-918. doi: 10.1016/j.jaad.2010.03.045.

13. Stenquist B., Ericson M.B., Strandeberg C., Mo¨lne L., Rose´n A., Larko¨ O. et al. Bispectral fluorescence imaging of aggressive basal cell carcinoma combined with histopathological mapping: a preliminary study indicating a possible adjunct to Mohs micrographic surgery. Br J Dermatol, 2006, vol. 154, рр. 305-309.

14. Wennberg A.M., Gudmundson F., Stenquist B., Ternesten A., Mo¨lne L., Rose´n A. In vivo detection of basal cell carcinoma using imaging spectroscopy. Acta Derm Venereol, 2000, vol. 80, рр. 152.

15. El Hoshy K., Bosseila M., El Sharkawy D., Sobhi R. Can basal cell carcinoma lateral border be determined by fluorescence diagnosis? Veri cation by Mohs micrographic surgery. Photodiagnosis Photodyn Ther, 2016, vol. 14, рр. 4-8. doi: 10.1016/j.pdpdt.2016.01.001.

16. Jeon S.Y., Kim K.H., & Song K.H. E cacy of Photodynamic Diagnosis-Guided Mohs Micrographic Surgery in Primary Squamous Cell Carcinoma. Dermatologic Surgery, 2013, vol. 39(12), рр. 1774-1783 doi:10.1111/dsu.12359.

17. Smits T., Kleinpenning M.M., Blokx W.A. et al. Fluorescence diagnosis in keratinocytic intraepidermal neoplasias. J Am Acad Dermatol, 2007, vol. 57, рр. 824-831.

18. Kleinpenning M.M., Wolberink E.W., Smits T., Blokx W.A.M. et al. Fluorescence diagnosis in actinic keratosis and squamous cell carcinoma. Photodermatol Photoimmunol Photomed, 2010, vol. 26(6), рр. 297-302. doi: 10.1111/j.1600-0781.2010.00546.x.

19. Wan M. et al. Clinical Bene ts of Preoperative Conventional Fluorescence Diagnosis in Surgical Treatment of Extramammary Paget Disease, Dermatol Surg, 2018, vol. 44(3), рр. 375-382. doi: 10.1097/DSS.0000000000001329.

20. Wu M., Huang L., Lu X., Li J., Wang Y., Zang J., Mo X., Shao X., Wang L., Cheng W., He F., Zhang Q., Zhang W., Zhao L. Utility of photodynamic diagnosis plus reflectance confocal microscopy in detecting the margins of extramammary Paget disease, Indian J Dermatol Venereol Leprol, 2021, vol. 87(2), рр. 207-213. doi: 10.25259/IJDVL_90_20.

21. Van der Beek N., Leeuw J., Demmendal C., Bjerring P., Neumann H.A.M. PpIX fluorescence combined with auto-fluorescence is more accurate than PpIX fluorescence alone in fluorescence detection of non-melanoma skin cancer: an intra-patient direct comparison study, Laser Surg Med, 2012, vol. 44, рр. 271-276.

22. Bosseila M., Mahgoub D., El-Sayed A., Salama D., Abd El-Moneim M., Al-Helf F. Does fluorescence diagnosis have a role in follow up of response to therapy in mycosis fungoides? Photodiagnosis Photodyn Ther, 2014, vol. 11(4), рр. 595-602. doi: 10.1016/j.pdpdt.2014.10.008.

23. de Leeuw J. et al. Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage, Lasers in Surgery and Medicine, 2009, vol. 41, рр. 96-103. doi:10.1002/lsm.20739.

24. Kamrava S.K., Behtaj M., Ghavami Y., Shahabi S., Jalessi M., Afshar E.E., Maleki S. Evaluation of diagnostic values of photodynamic diagnosis in identifying the dermal and mucosal squamous cell carcinoma, Photodiagnosis Photodyn Ther, 2012 doi: 10.1016/j.pdpdt.2012.03.004.


Review

For citations:


Filonenko E.V., Ivanova-Radkevich V.I. Fluorescent diagnostics of non-melanoma skin cancer. Biomedical Photonics. 2022;11(4):32-40. https://doi.org/10.24931/2413-9432-2022-11-4-32-40

Views: 569


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-9432 (Print)